• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
CHEN Xin, HU Zhongyuan, ZHAO Lufeng, et al. Progress and prospect on the rice-fish system in southern China[J]. Journal of South China Agricultural University, 2024, 45(6): 825-835. DOI: 10.7671/j.issn.1001-411X.202405026
Citation: CHEN Xin, HU Zhongyuan, ZHAO Lufeng, et al. Progress and prospect on the rice-fish system in southern China[J]. Journal of South China Agricultural University, 2024, 45(6): 825-835. DOI: 10.7671/j.issn.1001-411X.202405026

Progress and prospect on the rice-fish system in southern China

More Information
  • Author Bio:

    CHEN Xin:   陈 欣,博士,浙江大学二级教授,博士生导师。主讲本科课程《生态学》 《生态学基础及实验》等课程;国家级一流课程《基于稳定性同位素技术的生态系统氮素运转虚拟仿真实验》负责人;线上线下混合型实验教材《生态学实验》(高等教育出版社,2021)副主编。长期研究生物之间相互作用的生态系统功能及其在农业上的应用,聚焦稻鱼共生系统;担任国际重要学术期刊《Agriculture, Ecosystems and Environment》副主编、中国水产学会稻渔综合种养专业委员副主任、“科创中国”稻渔生态种养产业服务团团长;主持国家自然科学基金项目(面上项目、国际合作项目重点、区域创新联合重点项目)、国家重点研发计划、浙江省“尖兵”“领雁”研发攻关计划等科研项目;研究结果发表在《Science》《PNAS》《Frontiers in Ecology and the Environment》《Global Change Biology》《Journal of Ecology》《Soil Biology and Biochemistry》《eLife》《Ecosystems》等国内外学术期刊上;出版《生态型种养结合原理与实践》和《青田稻鱼共生系统生态学基础及保护与利用》等专著;曾荣获国家科学技术进步奖二等奖(第9完成人)、教育部科技进步一等奖(第1完成人)、广西科学技术合作奖(第1完成人)及神农中华农业科技奖二等奖(第1完成人)

  • Received Date: May 13, 2024
  • Available Online: July 29, 2024
  • Published Date: June 24, 2024
  • A paddy field with shallow water provides a suitable environment for aquatic animals such as cyprinid fish, which makes it possible to develop the rice-fish coculture system. Raising fish in paddy field has a long history in hilly regions of southern China. The rice-fish coculture system has become an important rice farming system in this area, which plays an important role in increasing productivity, stabilizing farmers’ income, and preserving local genetic resources. In this paper, we outlined the development of rice-fish coculture system in southern China, reviewed the recent studies on ecological functions of the rice-fish coculture system (e.g. productivity, pest control and pesticide reduction, soil carbon and fertility maintenance with low fertilizers, methane emission and oxidation, water resource use and the local genetic diversity preservation). The potential and possible approaches for the sustainable development of rice-fish coculture were discussed. The future researches on rice-fish coculture were prospected.

  • [1]
    陈欣, 唐建军, 胡亮亮, 等. 生态型种养结合原理与实践[M]. 北京: 中国农业出版社, 2019.
    [2]
    于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023(8): 19-26.
    [3]
    XIE J, HU L L, TANG J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 1381-1387. doi: 10.1073/pnas.1111043108
    [4]
    陈欣, 唐建军, 胡亮亮, 等. 青田稻鱼共生系统生态学基础及保护与利用[M]. 北京: 科学出版社, 2020.
    [5]
    GUO L, ZHAO L F, YE J L, et al. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems[J]. eLife, 2022, 11: e73869. doi: 10.7554/eLife.73869
    [6]
    ZHAO L F, DAI R X, ZHANG T J, et al. Fish mediate surface soil methane oxidation in the agriculture heritage rice-fish system[J]. Ecosystems, 2023, 26(8): 1656-1669. doi: 10.1007/s10021-023-00856-y
    [7]
    HALWART M, GUPTA M V. Culture of fish in rice fields[M]. 2004, Rome: FAO.
    [8]
    AHMED N, GARNETT S T. Integrated rice-fish farming in Bangladesh: Meeting the challenges of food security[J]. Food Security, 2011, 3(1): 81-92. doi: 10.1007/s12571-011-0113-8
    [9]
    胡亮亮, 唐建军, 张剑, 等. 稻−鱼系统的发展与未来思考[J]. 中国生态农业学报, 2015, 23(3): 268-275. doi: 10.13930/j.cnki.cjea.150025
    [10]
    COLEMAN R A, GAUFFRE B, PAVLOVA A, et al. Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish[J]. Heredity, 2018, 120(6): 515-532. doi: 10.1038/s41437-017-0008-3
    [11]
    FREED S, BARMAN B, DUBOIS M, et al. Maintaining diversity of integrated rice and fish production confers adaptability of food systems to global change[J]. Frontiers in Sustainable Food Systems, 2020, 4: 576179. doi: 10.3389/fsufs.2020.576179
    [12]
    AHMED N, HORNBUCKLE J, TURCHINI G M. Blue-green water utilization in rice-fish cultivation towards sustainable food production[J]. AMBIO, 2022, 51(9): 1933-1948. doi: 10.1007/s13280-022-01711-5
    [13]
    MARIYONO J. Sustainable intensification practices of fish-rice co-culture in Java, Indonesia: Technical, socio-economic and environmental features[J]. Journal of Agribusiness in Developing and Emerging Economies, 2023. doi: 10.1108/JADEE-09-2022-0208.
    [14]
    SATHORIA P, ROY B. Sustainable food production through integrated rice-fish farming in India: a brief review[J]. Renewable Agriculture and Food Systems, 2022, 37(5): 527-535. doi: 10.1017/S1742170522000126
    [15]
    胡亮亮, 赵璐峰, 唐建军, 等. 稻鱼共生系统的推广潜力分析: 以中国南方10省为例[J]. 中国生态农业学报(中英文), 2019, 27(7): 981-993. doi: 10.13930/j.cnki.cjea.190203
    [16]
    KOOHANFKAN P, FURTADO J. Traditional rice-fish systems as globally important agricultural heritage systems (GIAHS)[J]. International Rice Commission Newsletter, 2004, 53: 66-74.
    [17]
    张丹, 闵庆文. 贵州从江侗乡稻−鱼−鸭系统[M]. 北京: 中国农业出版社, 2015.
    [18]
    ZHANG Y, GUAN C Y, LI Z Y, et al. Review of rice-fish-duck symbiosis system in China: One of the globally important ingenious agricultural heritage systems (GIAHS)[J]. Sustainability, 2023, 15(3): 1910. doi: 10.3390/su15031910
    [19]
    CAO B, YU L, NAIPAL V, et al. A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine[J]. Earth System Science Data, 2021, 13(5): 2437-2456. doi: 10.5194/essd-13-2437-2021
    [20]
    中国统计年鉴编辑委员会. 中国统计年鉴[M]. 北京: 中国农业出版社, 2022.
    [21]
    郭梁, 任伟征, 胡亮亮, 等. 传统稻鱼系统中“田鲤鱼”的形态特征[J]. 应用生态学报, 2017, 28(2): 665-672. doi: 10.13287/j.1001-9332.201702.033
    [22]
    吴碧银, 许建, 曹顶臣, 等. 鲤低氧适应性状的全基因组关联分析[J]. 渔业科学进展, 2022, 43(2): 98-106. doi: 10.19663/j.issn2095-9869.20201218002
    [23]
    CHENG X B, LI F, KUMILAMBA G, et al. Transcriptome analysis in hepatopancreases reveals the response of domesticated common carp to a high-temperature environment in the agricultural heritage rice-fish system[J]. Frontiers in Physiology, 2023, 14: 1294729. doi: 10.3389/fphys.2023.1294729
    [24]
    MORTILLARO J M, DABBADIE L, RAMINOHARISOA A E, et al. Trophic functioning of integrated rice-fish farming in Madagascar: Insights from stable isotopes (δ13C & δ15N)[J]. Aquaculture, 2022, 555: 738240. doi: 10.1016/j.aquaculture.2022.738240
    [25]
    张剑, 胡亮亮, 任伟征, 等. 稻鱼系统中田鱼对资源的利用及对水稻生长的影响[J]. 应用生态学报, 2017, 28(1): 299-307. doi: 10.13287/j.1001-9332.201701.040
    [26]
    REN W Z, HU L L, GUO L, et al. Preservation of the genetic diversity of a local common carp in the agricultural heritage rice–fish system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(3): E546-E554. doi: 10.1073/pnas.1709582115
    [27]
    赵璐峰. 稻鱼共生对稻田系统碳氮及土壤甲烷氧化的影响[D]. 杭州: 浙江大学, 2022.
    [28]
    FREI M, BECKER K. Integrated rice-fish culture: Coupled production saves resources[J]. Natural Resources Forum, 2005, 29(2): 135-143. doi: 10.1111/j.1477-8947.2005.00122.x
    [29]
    GURUNG T B, WAGLE S K. Revisiting underlying ecological principles of rice-fish integrated farming for environmental, economical and social benefits[J]. Our Nature, 2005, 3(1): 1-12. doi: 10.3126/on.v3i1.328
    [30]
    TSURUTA T, YAMAGUCHI M, ABE S, et al. Effect of fish in rice-fish culture on the rice yield[J]. Fisheries Science, 2011, 77(1): 95-106. doi: 10.1007/s12562-010-0299-2
    [31]
    谢坚. 农田物种间相互作用的生态系统功能: 以全球重要农业文化遗产“稻鱼系统”为研究范例[D]. 杭州: 浙江大学, 2011.
    [32]
    胡亮亮. 农业生物种间互惠的生态系统功能[D]. 杭州: 浙江大学, 2014.
    [33]
    郭梁. 稻渔系统土壤氮素的维持及其生态学机理[D]. 杭州: 浙江大学, 2020.
    [34]
    蔡淑芳, 黄献光, 黄惠珍, 等. 稻鱼共作对水稻产量效应的Meta分析[J]. 水生生物学报, 2022, 46(12): 1924-1931.
    [35]
    胡中元. 稻田复合种养的生态系统功能与服务[D]. 杭州: 浙江大学, 2024.
    [36]
    ROTHUIS A J, NHAN D K, RICHTER C J, et al. Rice with fish culture in the semi-deep waters of the Mekong Delta, Vietnam: A socio-economical survey[J]. Aquaculture Research, 1998, 29(1): 47-57. doi: 10.1111/j.1365-2109.1998.tb01099.x
    [37]
    吴雪. 稻鱼系统养分循环利用研究[D]. 杭州: 浙江大学, 2012.
    [38]
    李娜娜. 中国主要稻田种养模式生态分析[D]. 杭州: 浙江大学, 2014.
    [39]
    HU L L, ZHANG J, REN W Z, et al. Can the co-cultivation of rice and fish help sustain rice production?[J]. Scientific Reports, 2016, 6(1): 28728. doi: 10.1038/srep28728
    [40]
    BERG H, TAM N T. Use of pesticides and attitude to pest management strategies among rice and rice-fish farmers in the Mekong Delta, Vietnam[J]. International Journal of Pest Management, 2012, 58(2): 153-164. doi: 10.1080/09670874.2012.672776
    [41]
    DWIYANA E, MENDOZA T C. Determinants of productivity and profitability of rice-fish farming systems[J]. Asia Life Sciences, 2008, 17(1): 21-42.
    [42]
    CHEN X, WU X, LI N N, et al. 2011. Globally important agricultural heritage system (GIAHS) rice-fish system in China: An ecological and economic analysis[C]//LI P P. Advances in Ecological Research, Zhenjian: Jiangsu University Press, 2021: 126-137.

    CHEN X, WU X, LI N N, et al. 2011. Globally important agricultural heritage system (GIAHS) rice-fish system in China: An ecological and economic analysis[C]//LI P P. Advances in Ecological Research, Zhenjian: Jiangsu University Press, 2021: 126-137.
    [43]
    VROMANT N, ROTHUIS A J, CUC N T T, et al. The effect of fish on the abundance of the rice caseworm Nymphula depunctalis (Guenee) (Lepidoptera: Pyralidae) in direct seeded, concurrent rice-fish fields[J]. Biocontrol Science and Technology, 1998, 8(4): 539-546. doi: 10.1080/09583159830054
    [44]
    SINHABABU D P, MAJUMDAR N. Evidence of feeding on brown plant hopper, Nilaparvata lugens (Stall) by common carp, Cyprinus carpio var. communis L.[J]. Journal of the Inland Fisheries Society of India, 1985, 13(2): 16-21.
    [45]
    VROMANT N, NHAN D K, CHAU N T H, et al. Effect of stocked fish on rice leaffolder Cnaphalocrocis medinalis and rice caseworm Nymphula depunctalis populations in intensive rice culture[J]. Biocontrol Science and Technology, 2003, 13(3): 285-297. doi: 10.1080/0958315031000110319
    [46]
    FREI M, KHAN M A M, RAZZAK M A, et al. Effects of a mixed culture of common carp, Cyprinus carpio L. , and Nile tilapia, Oreochromis niloticus (L. ), on terrestrial arthropod population, benthic fauna, and weed biomass in rice fields in Bangladesh[J]. Biological Control, 2007, 41(2): 207-213.
    [47]
    JI Z J, ZHAO L F, ZHANG T J, et al. Coculturing rice with aquatic animals promotes ecological intensification of paddy ecosystem[J]. Journal of Plant Ecology, 2023, 16: rtad014. doi: 10.1093/jpe/rtad014
    [48]
    肖筱成, 谌学珑, 刘永华, 等. 稻田主养彭泽鲫防治水稻病虫草害的效果观测[J]. 江西农业科技, 2001(4): 45-46.
    [49]
    ROTHUIS A J, VROMANT N, XUAN V T, et al. The effect of rice seeding rate on rice and fish production, and weed abundance in direct-seeded rice-fish culture[J]. Aquaculture, 1999, 172(3/4): 255-274. doi: 10.1016/S0044-8486(98)00396-2
    [50]
    SINHABABU D P, SANJOY SAHA S, SAHU P K. Performance of different fish species for controlling weeds in rainfed lowland rice field[J]. Biocontrol Science and Technology, 2013, 23(12): 1362-1372. doi: 10.1080/09583157.2013.838622
    [51]
    NAYAK P K, PANDA B B, DAS S K, et al. Weed control efficiency and productivity in rice-fish-duck integrated farming system[J]. Indian Journal of Fisheries, 2020, 67(3): 62-71. doi: 10.21077/ijf.2020.67.3.94309-07
    [52]
    GUO L, HU L L, ZHAO L F, et al. Coupling rice with fish for sustainable yields and soil fertility in China[J]. Rice Science, 2020, 27(3): 175-179. doi: 10.1016/j.rsci.2020.04.001
    [53]
    REN L P, LIU P P, XU F, et al. Rice-fish coculture system enhances paddy soil fertility, bacterial network stability and keystone taxa diversity[J]. Agriculture Ecosystems & Environment, 2023, 348: 108399. doi: 10.1016/j.agee.2023.108399
    [54]
    戴然欣, 赵璐峰, 唐建军, 等. 稻渔系统碳固持与甲烷排放特征[J]. 中国生态农业学报(中英文), 2022, 30(4): 616-629. doi: 10.12357/cjea.20210811
    [55]
    FREI M, BECKER K. A greenhouse experiment on growth and yield effects in integrated rice-fish culture[J]. Aquaculture, 2005, 244(1/2/3/4): 119-128. doi: 10.1016/j.aquaculture.2004.11.014
    [56]
    DATTA A, NAYAK D R, SINHABABU D P, et al. Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of eastern India[J]. Agriculture, Ecosystems & Environment, 2009, 129(1/2/3): 228-237.
    [57]
    袁伟玲, 曹凑贵, 李成芳, 等. 稻鸭、稻鱼共作生态系统CH4和N2O温室效应及经济效益评估[J]. 中国农业科学, 2009, 42(6): 2052-2060. doi: 10.3864/j.issn.0578-1752.2009.06.022
    [58]
    展茗, 曹凑贵, 汪金平, 等. 复合稻田生态系统温室气体交换及其综合增温潜势[J]. 生态学报, 2008(11): 5461-5468. doi: 10.3321/j.issn:1000-0933.2008.11.030
    [59]
    刘小燕. 稻鸭鱼生态种养对稻田甲烷减排及水稻栽培环境改善的功能研究[D]. 长沙: 湖南农业大学, 2004.
    [60]
    刘小燕, 黄璜, 杨治平, 等. 稻鸭鱼共栖生态系统CH4排放规律研究[J]. 生态环境, 2006(2): 265-269. doi: 10.16258/j.cnki.1674-5906.2006.02.014
    [61]
    HUANG M, ZHOU Y E, GUO J P, et al. Co-culture of rice and aquatic animals mitigates greenhouse gas emissions from rice paddies[J]. Aquaculture International, 2024, 32(2): 1785-1799. doi: 10.1007/s10499-023-01243-z
    [62]
    ZHANG L, LI L L, TANG Q Y, et al. Intermittent irrigation as a solution for reduced emissions and increased yields in ratoon rice systems[J]. Plant and Soil, 2024, 501: 225-236.
    [63]
    ZHANG G B, JI Y, MA J, et al. Intermittent irrigation changes production, oxidation, and emission of CH4 in paddy fields determined with stable carbon isotope technique[J]. Soil Biology & Biochemistry, 2012, 52: 108-116. doi: 10.1016/j.soilbio.2012.04.017
    [64]
    王楷, 李伏生, 方泽涛, 等. 不同灌溉模式和施氮量条件下稻田甲烷排放及其与有机碳组分关系[J]. 农业环境科学学报, 2017, 36(5): 1012-1020. doi: 10.11654/jaes.2016-1581
    [65]
    陈佳, 赵璐峰, 戴然欣, 等. 稻鱼共生系统的土壤产甲烷和甲烷氧化微生物群落[J]. 生态学杂志, 2023, 42(12): 2961-2971. doi: 10.13292/j.1000-4890.202312.001
    [66]
    BHATTACHARYYA P, SINHABABU D P, ROY K S, et al. Effect of fish species on methane and nitrous oxide emission in relation to soil C, N pools and enzymatic activities in minted shallow lowland rice-fish farming system[J]. Agriculture Ecosystems & Environment, 2013, 176: 53-62.
    [67]
    HU Y, YANG T, LIU Y B, et al. High fish stocking density weakens the effects of rice-fish co-culture on water eutrophication and greenhouse gas emissions[J]. Water Air and Soil Pollution, 2022, 233(6): 222. doi: 10.1007/s11270-022-05691-w
    [68]
    丁姣龙, 陈璐, 王忍, 等. 鱼排泄物与分泌物对水稻土壤酶活性及土壤养分的影响[J]. 湖南师范大学自然科学学报, 2021, 44(2): 74-79. doi: 10.7612/j.issn.2096-5281.2021.02.010
    [69]
    VROMANT N, CHAU N T H. Overall effect of rice biomass and fish on the aquatic ecology of experimental rice plots[J]. Agriculture Ecosystems & Environment, 2005, 111(1/2/3/4): 153-165.
    [70]
    YUAN W L, CAO C G, LI C F, et al. Methane and nitrous oxide emissions from rice-duck and rice-fish complex ecosystems and the evaluation of their economic significance[J]. Agricultural Sciences in China, 2009, 8(10): 1246-1255. doi: 10.1016/S1671-2927(08)60335-1
    [71]
    CONRAD R, ROTHFUSS F. Methane oxidation in the soil surface-layer of a flooded rice field and the effect of ammonium[J]. Biology and Fertility of Soils, 1991, 12(1): 28-32. doi: 10.1007/BF00369384
    [72]
    何建清, 潜祖琪, 郑建初, 等. 丽水稻作[M]. 北京: 中国农业出版社, 2006.
    [73]
    唐露. 重要传统农业贵州从江稻鱼鸭系统的水稻遗传多样性[D]. 杭州: 浙江大学, 2018.
    [74]
    YE Y Y, REN W Z, ZHANG S X, et al. Genetic diversity of fish in aquaculture and of common carp (Cyprinus carpio) in traditional rice-fish coculture[J]. Agriculture-Basel, 2022, 12(7): 997. doi: 10.3390/agriculture12070997
    [75]
    LIANG Z Q, ZOU L, TIAN L, et al. Genetic origin and differentiation of ten paddy field-farmed Cyprinus carpio strains in China[J]. Aquaculture, 2022, 561: 738573. doi: 10.1016/j.aquaculture.2022.738573
    [76]
    ZHONG Z X, FAN J J, SU H H, et al. Genetic sources and diversity of the paddy field carp in the Pearl River basin inferred from two mitochondrial loci[J]. Frontiers in Ecology and Evolution, 2022, 10: 896609. doi: 10.3389/fevo.2022.896609
    [77]
    JI D, SU X, YAO J J, et al. Genetic diversity and genetic differentiation of populations of golden-backed carp (Cyprinus carpio var. Jinbei) in traditional rice fields in Guizhou, China[J]. Animals, 2022, 12(11): 1377. doi: 10.3390/ani12111377
    [78]
    罗崎月. 传统稻鱼共生系统田鱼的遗传多样性[D]. 杭州: 浙江大学, 2023.
    [79]
    罗康隆. 侗乡鱼米[M]. 北京: 北京美术摄影出版社, 2020.
    [80]
    杨星星, 谢坚, 陈欣, 等. 稻鱼共生系统不同水深对水稻和鱼的效应[J]. 贵州农业科学, 2010(2): 73-74. doi: 10.3969/j.issn.1001-3601.2010.02.022
  • Related Articles

    [1]CHEN Shengde, CHEN Yigang, XU Xiaojie, LIU Junyu, GUO Jianzhou, HU Shiyun, LAN Yubin. Monitoring of corn leaf area index based on multispectral remote sensing of UAV[J]. Journal of South China Agricultural University, 2024, 45(4): 608-617. DOI: 10.7671/j.issn.1001-411X.202310025
    [2]YUE Xuejun, SONG Qingkui, LI Zhiqing, ZHENG Jianyu, XIAO Jiayi, ZENG Fanguo. Research status and prospect of crop information monitoring technology in field[J]. Journal of South China Agricultural University, 2023, 44(1): 43-56. DOI: 10.7671/j.issn.1001-411X.202209042
    [3]DILIXIATI Yimamu, ZHOU Jianping, XU Yan, FAN Xiangpeng, YALIKUN Shawuti. Cotton pest monitoring based on Logistic algorithm and remote sensing image[J]. Journal of South China Agricultural University, 2022, 43(2): 87-95. DOI: 10.7671/j.issn.1001-411X.202106004
    [4]DING Youchun, CHEN Liyuan, WANG Denghui, LIU Xiaodong, XU Chunbao, WANG Kaiyang. Design and test of monitoring system for rapeseed sowing quality[J]. Journal of South China Agricultural University, 2021, 42(6): 43-51. DOI: 10.7671/j.issn.1001-411X.202107029
    [5]LIU Chuanling, CHEN Ming, CHI Tao. Design and application of aquaculture monitoring system based on LoRa wireless communication[J]. Journal of South China Agricultural University, 2020, 41(6): 154-160. DOI: 10.7671/j.issn.1001-411X.202006043
    [6]XU Peiquan, SHEN Mingxia, LIU Longshen, HE Canlong, KANG Jian, TAO Yuandong. Design and implementation of piggery environmental monitoring system based on ECS and WSN[J]. Journal of South China Agricultural University, 2018, 39(1): 112-119. DOI: 10.7671/j.issn.1001-411X.2018.01.018
    [7]YUE Xuejun, WANG Yefu, LIU Yongxin, XU Xing, CHEN Shurong, CHEN Yixi, HOU Miancong, YAN Yingwei, QUAN Dongping, CHEN Zhuliang. Orchard environmental monitoring system based on GPRS and ZigBee[J]. Journal of South China Agricultural University, 2014, 35(4): 109-113. DOI: 10.7671/j.issn.1001-411X.2014.04.020
    [8]SANG Song, WANG Peidan, CAO Yuke, ZHONG Guohua. A study on Margarya melanioides and Cipangopaludina chinensis as the indicator organisms to monitor pesticide residues in a tea garden environment[J]. Journal of South China Agricultural University, 2014, 35(3): 58-62. DOI: 10.7671/j.issn.1001-411X.2014.03.011
    [9]XU Xing, YUE Xuejun, LIN Tao. The Design of Wireless Monitoring System of Water Environment Based on the ZigBee Network[J]. Journal of South China Agricultural University, 2013, 34(4): 593-597. DOI: 10.7671/j.issn.1001-411X.2013.04.027
    [10]WANG Jian-wu,XIAO Hong-sheng,ZHANG Li-ming. Application of GPS to Monitoring Dynamics of Reclaiming Coastal Land[J]. Journal of South China Agricultural University, 2000, (2): 1-4. DOI: 10.7671/j.issn.1001-411X.2000.02.001
  • Cited by

    Periodical cited type(5)

    1. 苏红梅,韩丽萍,刘俊华. 数字赋能内蒙古牛羊肉供应链绿色转型研究. 内蒙古社会科学. 2025(01): 205-212 .
    2. 梁金鑫,苑志宇,罗新惠,陈耿,吴毓瑾,王春昕. 家畜高通量体尺测量及体重预估技术研究进展. 中国畜牧兽医. 2025(02): 749-758 .
    3. 余仕亮. 云南省景东县肉牛疾病防治措施. 现代畜牧科技. 2025(04): 111-113 .
    4. 徐君鹏,时磊,王宇,杨文强,杨秋亚. 基于PLC的生猪养殖智能化环境监控及云平台系统设计. 河南科技学院学报(自然科学版). 2025(03): 44-53 .
    5. 赵晓霞,袁洪波,程曼. 利用深度学习实现羊只多目标跟踪. 河北农业大学学报. 2024(06): 24-31 .

    Other cited types(0)

Catalog

    Article views (859) PDF downloads (121) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return