DING Youchun, CHEN Liyuan, WANG Denghui, et al. Design and test of monitoring system for rapeseed sowing quality [J]. Journal of South China Agricultural University, 2021, 42(6): 43-51. DOI: 10.7671/j.issn.1001-411X.202107029
    Citation: DING Youchun, CHEN Liyuan, WANG Denghui, et al. Design and test of monitoring system for rapeseed sowing quality [J]. Journal of South China Agricultural University, 2021, 42(6): 43-51. DOI: 10.7671/j.issn.1001-411X.202107029

    Design and test of monitoring system for rapeseed sowing quality

    More Information
    • Received Date: July 18, 2021
    • Available Online: May 17, 2023
    • Objective 

      To obtain rapeseed sowing quality information and realize information display, remote transmission and cloud storage, a rape sowing quality monitoring system was proposed.

      Method 

      This system consisted of rapeseed sensor detection device, seeding monitoring terminal and seeding quality information cloud storage platform. Various forms of small particle size seed sensor detection devices were used to achieve real-time acquisition of sowing quality information, and a radio frequency communication module was used to achieve data interaction with the sowing monitoring terminal. The monitoring terminal completed the information display and realized the accurate positioning of the sowing quality information position through the Beidou positioning unit. This system realized the remote transmission and cloud storage of rape sowing quality information through wireless transmission module. A bench test of the rape sowing quality information collection system was built and field performance tests were conducted to verify the stability and reliability of this system.

      Result 

      The designed seed quality information acquisition system could obtain seeder longitude and latitude information through the embedded Beidou positioning unit, and transmitted the seed quality information and positioning information to the cloud storage platform by 4G wireless transmission module. The bench test results showed that the detection accuracy rate was not lower than 97.1% when the seed dropping frequency of seed platter was 16.5−26.2 Hz. The collected seed quality information of rapeseed could be transmitted to the seed monitoring terminal and displayed. The seed quality information was accurately uploaded to the database of cloud storage platform, the transmission time did not exceed 2 s, and the information was consistent with the terminal display data. The field test results showed that the detection accuracy was no less than 96.6% at the seed dropping frequency of 17.4−25.5 Hz, and the system operated normally.

      Conclusion 

      This system provides the support for the intelligent improvement of seeding process, the generation of seeding state diagram, and yield prediction.

    • [1]
      王振华, 李文广, 翟改霞, 等. 基于单片机控制的气力式免耕播种机监测系统[J]. 农业机械学报, 2013, 44(S1): 56-60.
      [2]
      丁幼春, 王雪玲, 廖庆喜, 等. 基于时变窗口的油菜精量排种器漏播实时检测方法[J]. 农业工程学报, 2014, 30(24): 11-21. doi: 10.3969/j.issn.1002-6819.2014.24.002
      [3]
      丁幼春, 王凯阳, 杜超群, 等. 高通量小粒径种子流检测装置设计与试验[J]. 农业工程学报, 2020, 36(13): 20-28. doi: 10.11975/j.issn.1002-6819.2020.13.003
      [4]
      KOCHER M F, LAN Y, CHEN C, et al. Opto-electronic sensor system for rapid evaluation of planter seed spacing uniformity[J]. Transactions of the ASAE, 1998, 41(1): 237-245. doi: 10.13031/2013.17143
      [5]
      LAN Y, KOCHER M F, SMITH J A. Opto-electronic sensor system for laboratory measurement of planter seed spacing with small seeds[J]. Journal of Agricultural Engineering Research, 1999, 72(2): 119-127. doi: 10.1006/jaer.1998.0353
      [6]
      KARAYEL D, WIESEHOFF M, OZMERZI A, et al. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system[J]. Computers and Electronics in Agriculture, 2006, 50(2): 89-96. doi: 10.1016/j.compag.2005.05.005
      [7]
      KUMHALA F, KVIZ Z, KMOCH J, et al. Dynamic laboratory measurement with dielectric sensor for forage mass flow determination[J]. Research in Agricultural Engineering, 2007, 53(4): 149-154.
      [8]
      KUMHALA F, PROSEK V, BLAHOVEC J. Capacitive throughput sensor for sugar beets and potatoes[J]. Biosystems Engineering, 2009, 102(1): 36-43. doi: 10.1016/j.biosystemseng.2008.10.002
      [9]
      周利明, 李树君, 张小超, 等. 基于电容法的棉管籽棉质量流量检测[J]. 农业机械学报, 2014, 45 (6): 47-52. doi: 10.6041/j.issn.1000-1298.2014.06.008
      [10]
      周利明, 王书茂, 张小超, 等. 基于电容信号的玉米播种机排种性能监测系统[J]. 农业工程学报, 2012, 28(13): 16-21.
      [11]
      纪超, 陈学庚, 陈金成, 等. 玉米免耕精量播种机排种质量监测系统[J]. 农业机械学报, 2016, 47(8): 1-6. doi: 10.6041/j.issn.1000-1298.2016.08.001
      [12]
      王金武, 张曌, 王菲, 等. 基于压电冲击法的水稻穴直播监测系统设计与试验[J]. 农业机械学报, 2019, 50(6): 74-84. doi: 10.6041/j.issn.1000-1298.2019.06.008
      [13]
      MENG P X, GENG D Y, WANG J Z, et al. Based on the wireless transmission of pneumatic seeder seeding condition monitor[M]. India: Springer, 2016: 295-303.
      [14]
      王在满, 裴娟, 何杰, 等. 水稻精量穴直播机播量监测系统研制[J]. 农业工程学报, 2020, 36(10): 9-16. doi: 10.11975/j.issn.1002-6819.2020.10.002
      [15]
      黄东岩, 贾洪雷, 祁悦, 等. 基于聚偏二氟乙烯压电薄膜的播种机排种监测系统[J]. 农业工程学报, 2013, 29(23): 15-22. doi: 10.3969/j.issn.1002-6819.2013.23.003
      [16]
      黄东岩, 朱龙图, 贾洪雷, 等. 基于GPS和GPRS的远程玉米排种质量监测系统[J]. 农业工程学报, 2016, 32(6): 162-168. doi: 10.11975/j.issn.1002-6819.2016.06.022
      [17]
      车宇, 伟利国, 刘婞韬, 等. 免耕播种机播种质量红外监测系统设计与试验[J]. 农业工程学报, 2017, 33(S1): 11-16.
      [18]
      LU C Y, FU W Q, ZHAO C J, et al. Design and experiment on real-time monitoring system of wheat seeding[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2): 32-40.
      [19]
      丁幼春, 杨军强, 朱凯, 等. 油菜精量排种器种子流传感装置设计与试验[J]. 农业工程学报, 2017, 33(9): 29-36. doi: 10.11975/j.issn.1002-6819.2017.09.004
      [20]
      丁幼春, 朱凯, 王凯阳, 等. 薄面激光−硅光电池中小粒径种子流监测装置研制[J]. 农业工程学报, 2019, 35(8): 12-20. doi: 10.11975/j.issn.1002-6819.2019.08.002
      [21]
      丁幼春, 张莉莉, 杨军强, 等. 油菜精量直播机播种监测系统传感装置改进及通信设计[J]. 农业工程学报, 2018, 34(14): 19-26. doi: 10.11975/j.issn.1002-6819.2018.14.003
      [22]
      中华人民共和国国家质量监督检验检疫总局. 单粒(精密)播种机试验方法标准: GB/T 6973—2005[S]. 北京: 中国标准出版社, 2005.
    • Cited by

      Periodical cited type(18)

      1. 于虹,李永波,王可楠,姜炎旭. 智能田间除草机器人的设计与研究. 南方农机. 2025(06): 14-17 .
      2. 蔡竹轩,蔡雨霖,曾凡国,岳学军. 基于改进YOLOv5l的田间水稻稻穗识别. 华南农业大学学报. 2024(01): 108-115 . 本站查看
      3. 冀汶莉,刘洲,邢海花. 基于YOLO v5的农田杂草识别轻量化方法研究. 农业机械学报. 2024(01): 212-222+293 .
      4. 李卫丽,金小俊,于佳琳,陈勇. 基于深度学习的蔬菜田精准除草作业区域检测方法. 福建农业学报. 2024(02): 199-205 .
      5. 许爽,杨乐,刘婷. Ghost-MobileNet v2:一种轻量级玉米田杂草识别新模型. 江苏农业科学. 2024(20): 173-180 .
      6. 于丰华,许童羽,郭忠辉,白驹驰,相爽,国斯恩,金忠煜,李世隆,王世宽,刘美含,惠尹宣. 水稻智慧无人农场关键技术研究现状与展望. 智慧农业(中英文). 2024(06): 1-22 .
      7. 曲福恒,李婉婷,杨勇,刘红玉,郝忠林. 基于图像增强和注意力机制的作物杂草识别. 计算机工程与设计. 2023(03): 815-821 .
      8. 李志臣,凌秀军,李鸿秋,李志军. 基于改进ShuffleNet的板栗分级方法. 山东农业大学学报(自然科学版). 2023(02): 299-307 .
      9. 王亚鹏,曹姗姗,李全胜,孙伟. 融合迁移学习和集成学习的自然背景下荒漠植物识别方法. 智慧农业(中英文). 2023(02): 93-103 .
      10. 田鹏菲,王皞阳. 机器视觉技术在我国农业领域内的应用分析. 江苏农业科学. 2023(14): 13-21 .
      11. 王子曼,杨学全. 基于深度学习的多特征融合杂草识别仿真. 计算机仿真. 2023(08): 206-210 .
      12. 李东升,胡文泽,兰玉彬,范明洪,李翠云,朱俊科. 深度学习在杂草识别领域的研究现状与展望. 中国农机化学报. 2022(09): 137-144 .
      13. 方璇,金小俊,陈勇. 基于人工智能的作物与草坪杂草识别研究进展. 林业机械与木工设备. 2022(10): 30-36 .
      14. 苏令涛,李瑞泽,张功磊,刘桂霞. 基于深度学习的农作物病虫害识别研究. 数学建模及其应用. 2022(04): 1-12 .
      15. 刘东旭. 基于分水岭分割和颜色深度特征的眼球图像识别算法研究. 长春工程学院学报(自然科学版). 2021(03): 115-118+128 .
      16. 赵辉,曹宇航,岳有军,王红君. 基于改进DenseNet的田间杂草识别. 农业工程学报. 2021(18): 136-142 .
      17. 瞿红春,高鹏宇,朱伟华,许旺山,郭龙飞. 基于NRS-CNN的民航发动机滑油消耗量预测. 中国民航大学学报. 2021(05): 16-21+27 .
      18. 苗中华,余孝有,徐美红,何创新,李楠,孙腾. 基于图像处理多算法融合的杂草检测方法及试验. 智慧农业(中英文). 2020(04): 103-115 .

      Other cited types(18)

    Catalog

      Article views (618) PDF downloads (695) Cited by(36)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return