Citation: | DING Youchun, CHEN Liyuan, WANG Denghui, et al. Design and test of monitoring system for rapeseed sowing quality [J]. Journal of South China Agricultural University, 2021, 42(6): 43-51. DOI: 10.7671/j.issn.1001-411X.202107029 |
To obtain rapeseed sowing quality information and realize information display, remote transmission and cloud storage, a rape sowing quality monitoring system was proposed.
This system consisted of rapeseed sensor detection device, seeding monitoring terminal and seeding quality information cloud storage platform. Various forms of small particle size seed sensor detection devices were used to achieve real-time acquisition of sowing quality information, and a radio frequency communication module was used to achieve data interaction with the sowing monitoring terminal. The monitoring terminal completed the information display and realized the accurate positioning of the sowing quality information position through the Beidou positioning unit. This system realized the remote transmission and cloud storage of rape sowing quality information through wireless transmission module. A bench test of the rape sowing quality information collection system was built and field performance tests were conducted to verify the stability and reliability of this system.
The designed seed quality information acquisition system could obtain seeder longitude and latitude information through the embedded Beidou positioning unit, and transmitted the seed quality information and positioning information to the cloud storage platform by 4G wireless transmission module. The bench test results showed that the detection accuracy rate was not lower than 97.1% when the seed dropping frequency of seed platter was 16.5−26.2 Hz. The collected seed quality information of rapeseed could be transmitted to the seed monitoring terminal and displayed. The seed quality information was accurately uploaded to the database of cloud storage platform, the transmission time did not exceed 2 s, and the information was consistent with the terminal display data. The field test results showed that the detection accuracy was no less than 96.6% at the seed dropping frequency of 17.4−25.5 Hz, and the system operated normally.
This system provides the support for the intelligent improvement of seeding process, the generation of seeding state diagram, and yield prediction.
[1] |
王振华, 李文广, 翟改霞, 等. 基于单片机控制的气力式免耕播种机监测系统[J]. 农业机械学报, 2013, 44(S1): 56-60.
|
[2] |
丁幼春, 王雪玲, 廖庆喜, 等. 基于时变窗口的油菜精量排种器漏播实时检测方法[J]. 农业工程学报, 2014, 30(24): 11-21. doi: 10.3969/j.issn.1002-6819.2014.24.002
|
[3] |
丁幼春, 王凯阳, 杜超群, 等. 高通量小粒径种子流检测装置设计与试验[J]. 农业工程学报, 2020, 36(13): 20-28. doi: 10.11975/j.issn.1002-6819.2020.13.003
|
[4] |
KOCHER M F, LAN Y, CHEN C, et al. Opto-electronic sensor system for rapid evaluation of planter seed spacing uniformity[J]. Transactions of the ASAE, 1998, 41(1): 237-245. doi: 10.13031/2013.17143
|
[5] |
LAN Y, KOCHER M F, SMITH J A. Opto-electronic sensor system for laboratory measurement of planter seed spacing with small seeds[J]. Journal of Agricultural Engineering Research, 1999, 72(2): 119-127. doi: 10.1006/jaer.1998.0353
|
[6] |
KARAYEL D, WIESEHOFF M, OZMERZI A, et al. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system[J]. Computers and Electronics in Agriculture, 2006, 50(2): 89-96. doi: 10.1016/j.compag.2005.05.005
|
[7] |
KUMHALA F, KVIZ Z, KMOCH J, et al. Dynamic laboratory measurement with dielectric sensor for forage mass flow determination[J]. Research in Agricultural Engineering, 2007, 53(4): 149-154.
|
[8] |
KUMHALA F, PROSEK V, BLAHOVEC J. Capacitive throughput sensor for sugar beets and potatoes[J]. Biosystems Engineering, 2009, 102(1): 36-43. doi: 10.1016/j.biosystemseng.2008.10.002
|
[9] |
周利明, 李树君, 张小超, 等. 基于电容法的棉管籽棉质量流量检测[J]. 农业机械学报, 2014, 45 (6): 47-52. doi: 10.6041/j.issn.1000-1298.2014.06.008
|
[10] |
周利明, 王书茂, 张小超, 等. 基于电容信号的玉米播种机排种性能监测系统[J]. 农业工程学报, 2012, 28(13): 16-21.
|
[11] |
纪超, 陈学庚, 陈金成, 等. 玉米免耕精量播种机排种质量监测系统[J]. 农业机械学报, 2016, 47(8): 1-6. doi: 10.6041/j.issn.1000-1298.2016.08.001
|
[12] |
王金武, 张曌, 王菲, 等. 基于压电冲击法的水稻穴直播监测系统设计与试验[J]. 农业机械学报, 2019, 50(6): 74-84. doi: 10.6041/j.issn.1000-1298.2019.06.008
|
[13] |
MENG P X, GENG D Y, WANG J Z, et al. Based on the wireless transmission of pneumatic seeder seeding condition monitor[M]. India: Springer, 2016: 295-303.
|
[14] |
王在满, 裴娟, 何杰, 等. 水稻精量穴直播机播量监测系统研制[J]. 农业工程学报, 2020, 36(10): 9-16. doi: 10.11975/j.issn.1002-6819.2020.10.002
|
[15] |
黄东岩, 贾洪雷, 祁悦, 等. 基于聚偏二氟乙烯压电薄膜的播种机排种监测系统[J]. 农业工程学报, 2013, 29(23): 15-22. doi: 10.3969/j.issn.1002-6819.2013.23.003
|
[16] |
黄东岩, 朱龙图, 贾洪雷, 等. 基于GPS和GPRS的远程玉米排种质量监测系统[J]. 农业工程学报, 2016, 32(6): 162-168. doi: 10.11975/j.issn.1002-6819.2016.06.022
|
[17] |
车宇, 伟利国, 刘婞韬, 等. 免耕播种机播种质量红外监测系统设计与试验[J]. 农业工程学报, 2017, 33(S1): 11-16.
|
[18] |
LU C Y, FU W Q, ZHAO C J, et al. Design and experiment on real-time monitoring system of wheat seeding[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2): 32-40.
|
[19] |
丁幼春, 杨军强, 朱凯, 等. 油菜精量排种器种子流传感装置设计与试验[J]. 农业工程学报, 2017, 33(9): 29-36. doi: 10.11975/j.issn.1002-6819.2017.09.004
|
[20] |
丁幼春, 朱凯, 王凯阳, 等. 薄面激光−硅光电池中小粒径种子流监测装置研制[J]. 农业工程学报, 2019, 35(8): 12-20. doi: 10.11975/j.issn.1002-6819.2019.08.002
|
[21] |
丁幼春, 张莉莉, 杨军强, 等. 油菜精量直播机播种监测系统传感装置改进及通信设计[J]. 农业工程学报, 2018, 34(14): 19-26. doi: 10.11975/j.issn.1002-6819.2018.14.003
|
[22] |
中华人民共和国国家质量监督检验检疫总局. 单粒(精密)播种机试验方法标准: GB/T 6973—2005[S]. 北京: 中国标准出版社, 2005.
|