Citation: | LIU Chuanling, CHEN Ming, CHI Tao. Design and application of aquaculture monitoring system based on LoRa wireless communication[J]. Journal of South China Agricultural University, 2020, 41(6): 154-160. DOI: 10.7671/j.issn.1001-411X.202006043 |
Aiming at the characteristics of large-scale aquaculture environment covering a wide area and interaction of a variety of water environment monitoring factors, to design a device that can simultaneously monitor five water quality parameters including dissolved oxygen, salinity, pH, ammonia nitrogen and temperature. The device can realize long-distance wireless transmission of water quality data through long-distance wireless communication technology, and dynamically display the monitoring environmental factors on the host computer side visualization platform.
The control core of the data acquisition terminal adopted 16-bit MSP430F149 microcontroller of TI company. The water quality information was collected by various sensors. Ammonia nitrogen collection terminal adopted NHN-202A ammonia nitrogen sensor with test range of 0−10 mg/L. Dissolved oxygen and temperature acquisition terminal adopted RDO-206 sensor with dissolved oxygen range of 0−20 mg/L and temperature range of 0−40 ℃. pH collection terminal adopted PHG-200 sensor with test range of 0−14. Salinity collection terminal adopted DDM-202I/C sensor with test range of 0−0.5%. The server side was built using Linux system and built by the IntelliJ IDEA development tool under JetBrains. The programming language was Java. The online platform used the SpringMVC framework, and the database connection was operated through the HiBernate object-relational mapping framework. The monitoring platform was deployed on the Linux system through Tomcat. The data display interface was realized by calling the visualization library Echarts.
The absolute error of dissolved oxygen content measured by the system was 0.12 mg/L, while those of salinity, pH and temperature were 0.001%, 0.017, and 0.05 ℃, respectively. In the power consumption test of single acquisition device, 5 200 mA battery could continuously supply power to the terminal device for 28.5 h, and the online system was stable.
The combination of LoRa wireless communication technology and the data visualization platform on the host computer side in the device enhances the reliability of the long-distance water quality monitoring, and solves the problems of long-distance transmission of monitoring data in dynamic real-time measurement and display of data synchronization on the host computer platform.
[1] |
杨红生, 杨心愿, 林承刚, 等. 着力实现海洋牧场建设的理念、装备、技术、管理现代化[J]. 中国科学院院刊, 2018, 33(7): 732-738.
|
[2] |
赵敏华, 李莉, 呼娜. 基于无线传感器网络的水质监测系统设计[J]. 计算机工程, 2014, 40(2): 92-96. doi: 10.3969/j.issn.1000-3428.2014.02.020
|
[3] |
黄建清, 王卫星, 姜晟, 等. 基于无线传感器网络的水产养殖水质监测系统开发与试验[J]. 农业工程学报, 2013, 29(4): 183-190.
|
[4] |
李鑫星, 王聪, 田野, 等. 基于ZigBee的多参数水质在线监测系统[J]. 农业机械学报, 2015, 46(增刊1): 168-173. doi: 10.6041/j.issn.1000-1298.2015.S0.028
|
[5] |
金光, 高子航, 江先亮, 等. 基于低功耗广域网的海岛水产养殖环境监测系统研制[J]. 农业工程学报, 2018, 34(24): 184-191. doi: 10.11975/j.issn.1002-6819.2018.24.022
|
[6] |
林永君, 杨春来, 常喜茂, 等. 基于GPRS的远程监控系统的研究与实现[J]. 化工自动化及仪表, 2011, 38(11): 1367-1370. doi: 10.3969/j.issn.1000-3932.2011.11.025
|
[7] |
WANG Y, QI C, PAN H. Design of remote monitoring system for aquaculture cages based on 3G networks and ARM-Android embedded system[C]//GUO H. Procedia Engineering. Amsterdam: Elsevier Science, 2012, 29: 79-83.
|
[8] |
柴秋子, 陈东晓, 余红, 等. 基于超低功耗单片机和光电传感器的蜜蜂计数监测系统设计[J]. 农业工程学报, 2017, 33(13): 193-198. doi: 10.11975/j.issn.1002-6819.2017.13.025
|
[9] |
李昕, 曲梦可, 荣誉. 基于MSP430单片机的模糊温湿度控制器的设计[J]. 传感技术学报, 2007, 20(4): 805-808. doi: 10.3969/j.issn.1004-1699.2007.04.021
|
[10] |
丁云风, 窦银科, 潘曜, 等. 基于MSP430南极冰盖冰雪监测站设计与应用[J]. 控制工程, 2018, 25(5): 746-751.
|
[11] |
韩玉冰, 傅泽田, 张小栓, 等. 基于WSN的观赏鱼养殖水质环境监测系统研究[J]. 农业机械学报, 2016, 47(增刊1): 392-400.
|
[12] |
FEI Z, LI B, YANG S, et al. A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms, and open problems[J]. IEEE Commun Surv Tut, 2017, 19(1): 550-586. doi: 10.1109/COMST.2016.2610578
|
[13] |
DING Q, MA D, LI D, et al. Design and implementation of a sensors node oriented water quality monitoring in aquaculture[J]. Sensor Lett, 2010, 8(1): 70-74. doi: 10.1166/sl.2010.1204
|
[14] |
何灿隆, 沈明霞, 刘龙申, 等. 基于NB-IoT的温室温度智能调控系统设计与实现[J]. 华南农业大学学报, 2018, 39(2): 117-124. doi: 10.7671/j.issn.1001-411X.2018.02.018
|
[15] |
张铮, 曹守启, 朱建平, 等. 面向大面积渔业环境监测的长距离低功耗LoRa传感器网络[J]. 农业工程学报, 2019, 35(1): 164-171. doi: 10.11975/j.issn.1002-6819.2019.01.020
|
[16] |
WANG L, CHEN X, GU D. Design of water quality monitoring system for aquaculture based on ZigBee[J]. DEStech Trans Comput Sci Eng, 2017. doi: 10.12783/dtcse/iceiti2017/18845
|
[17] |
万雪芬, 崔剑, 杨义, 等. 地下LoRa无线传感器网络的传输测试系统研究[J]. 华南农业大学学报, 2018, 39(3): 118-124. doi: 10.7671/j.issn.1001-411X.2018.03.018
|
[18] |
曹文熙, 孙兆华, 李彩, 等. 水质监测浮标数据采集和接收系统设计及其应用[J]. 热带海洋学报, 2018, 37(5): 1-6.
|
[19] |
LEE M W, HONG S H, CHOI H, et al. Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors[J]. Process Biochem, 2008, 43(10): 1107-1113. doi: 10.1016/j.procbio.2008.06.002
|
[20] |
ZHU X, LI D, HE D, et al. A remote wireless system for water quality online monitoring in intensive fish culture[J]. Comput Electron Agr, 2010, 71(Sup 1): S3-S9.
|
[21] |
蒋鹏. 基于无线传感器网络的湿地水环境远程实时监测系统关键技术研究[J]. 传感技术学报, 2007, 20(1): 183-186. doi: 10.3969/j.issn.1004-1699.2007.01.041
|
[1] | ZHAO Gaoyuan, ZHANG Yali, ZHANG Zichao, LI Zhiyong, DENG Jizhong. Monitoring rice bacterial blight based on UAV images of different ground sampling distances (GSD)[J]. Journal of South China Agricultural University, 2025, 46(1): 115-123. DOI: 10.7671/j.issn.1001-411X.202401003 |
[2] | JIANG Dong, XIAO Maohua, ZHANG Haijun, ZHOU Junbo, ZHU Hong, WANG Xiaochan, CHEN Shuang. Water quality monitoring and grade judgment system based on IGWOPSO-SVM algorithm[J]. Journal of South China Agricultural University, 2023, 44(4): 638-648. DOI: 10.7671/j.issn.1001-411X.202207034 |
[3] | WANG Xiaotian, WANG Wei, CHEN Jiajun, CHU Chengcai. Long-distance signal transduction of nitrogen and phosphorus in plants[J]. Journal of South China Agricultural University, 2022, 43(6): 78-86. DOI: 10.7671/j.issn.1001-411X.202208058 |
[4] | DING Youchun, CHEN Liyuan, WANG Denghui, LIU Xiaodong, XU Chunbao, WANG Kaiyang. Design and test of monitoring system for rapeseed sowing quality[J]. Journal of South China Agricultural University, 2021, 42(6): 43-51. DOI: 10.7671/j.issn.1001-411X.202107029 |
[5] | WAN Xuefen, CUI Jian, YANG Yi, JIANG Xueqin, Sardar Muhammad SOHAIL. Research on transmission measurement system for LoRa wireless underground sensor network[J]. Journal of South China Agricultural University, 2018, 39(3): 118-124. DOI: 10.7671/j.issn.1001-411X.2018.03.018 |
[6] | LI Qing,LUO Xi-wen,LU Hua-zhong,YANG Jun-zhong. Automotive Hydraulic Automatic Transmission Computer Testing System[J]. Journal of South China Agricultural University, 2007, 28(2): 110-112. DOI: 10.7671/j.issn.1001-411X.2007.02.028 |
[7] | WANG Jian-wu,XIAO Hong-sheng,ZHANG Li-ming. Application of GPS to Monitoring Dynamics of Reclaiming Coastal Land[J]. Journal of South China Agricultural University, 2000, (2): 1-4. DOI: 10.7671/j.issn.1001-411X.2000.02.001 |
[8] | COMPARISONS OF CALCULATION METHODS FOR GENETIC DISTANCE IN RAPD ANALYSIS[J]. Journal of South China Agricultural University, 1997, (Z1). |
[9] | Li Zuqiang, Liao Shimo ,Wang Guochang. PRIMARY REPORT OF CLUSTERING AND GENETIC DISTANCE ESTIMATION BETWEEN RICE CULTIVARS AND WILD RICE VARIETIES[J]. Journal of South China Agricultural University, 1995, (3): 93-97. |
[10] | Zhou Weichuan. ON APPARITION DYNAMIC OF ASPARAGUS LONG BEAN RUST[J]. Journal of South China Agricultural University, 1989, (2): 54-59. |