Citation: | CHEN Shengde, CHEN Yigang, XU Xiaojie, et al. Monitoring of corn leaf area index based on multispectral remote sensing of UAV[J]. Journal of South China Agricultural University, 2024, 45(4): 608-617. DOI: 10.7671/j.issn.1001-411X.202310025 |
In order to achieve a rapid estimation of the leaf area index (LAI) of maize, this study explores a more efficient monitoring model for maize LAI estimation based multispectral remote sensing of unmanned aerial vehicle (UAV).
This study focused on maize plants throughout their entire growth cycle. Multispectral imagery of maize plants was acquired using UAV, and maize LAI were collected in field. The quantitative relationship between vegetation index and maize LAI was investigated using multispectral information to select relevant vegetation indices. Multiple linear stepwise regression, support vector machine regression (SVM), random forest regression (RF), and a random forest algorithm optimized using whale optimization algorithm (WOA-RF) were used to construct maize LAI prediction models, respectively. The best prediction model was selected on the basis of comparison.
The vegetation indices of NDVI, NDRE, EVI and CIG were highly correlated with LAI (P < 0.01). The models of multiple linear regression, SVM, RF, and WOA-RF were constructed, with R-squared values of 0.873 2, 0.878 0, 0.917 7, and 0.940 8 respectively, and the root mean square error (RMSE) values of 0.277 5, 0.236 5, 0.209 0, and 0.128 7 respectively.
The prediction model of maize LAI based on WOA-RF provides a high level of accuracy, which can meet the requirement for maize production. It can be used to guide planting management of maize during the growth period.
[1] |
李志坚, 谷云松, 贺云林, 等. 湘南地区甜玉米优质高产栽培技术[J]. 农业科技通讯, 2023(2): 177-179.
|
[2] |
徐春光. 诸城市植保无人机飞防作业快速发展[J]. 农机质量与监督, 2022(1): 28.
|
[3] |
许鹤. 农作物灾害损失评定遥感方法研究[J]. 农业与技术, 2023, 43(8): 12-15.
|
[4] |
CASANOVA D, EPEMA G F, GOUDRIAAN J. Monitoring rice reflectance at field level for estimating biomass and LAI[J]. Field Crops Research, 1998, 55(1/2): 83-92.
|
[5] |
MORIONDO M, MASELLI F, BINDI M. A simple model of regional wheat yield based on NDVI data[J]. European Journal of Agronomy, 2007, 26(3): 266-274. doi: 10.1016/j.eja.2006.10.007
|
[6] |
杨贵军, 李长春, 于海洋, 等. 农用无人机多传感器遥感辅助小麦育种信息获取[J]. 农业工程学报, 2015, 31(21): 184-190.
|
[7] |
邵国敏, 王亚杰, 韩文霆. 基于无人机多光谱遥感的夏玉米叶面积指数估算方法[J]. 智慧农业(中英文), 2020, 2(3): 118-128.
|
[8] |
张瑾. 基于无人机多光谱影像的夏玉米叶面积指数估测模型研究[D]. 太原: 山西农业大学, 2022.
|
[9] |
孙诗睿, 赵艳玲, 王亚娟, 等. 基于无人机多光谱遥感的冬小麦叶面积指数反演[J]. 中国农业大学学报, 2019, 24(11): 51-58. doi: 10.11841/j.issn.1007-4333.2019.11.06
|
[10] |
HE B, JIA B, ZHAO Y, et al. Estimate soil moisture of maize by combining support vector machine and chaotic whale optimization algorithm[J]. Agricultural Water Management, 2022, 267: 107618 doi: 10.1016/j.agwat.2022.107618
|
[11] |
刘帅兵, 金秀良, 冯海宽, 等. 病害胁迫下玉米LAI遥感反演研究[J]. 农业机械学报, 2023, 54(3): 246-258.
|
[12] |
王圆, 毕玉革. 基于无人机高光谱的荒漠草原地物精简学习分类模型[J]. 农业机械学报, 2022, 53(11): 236-243. doi: 10.6041/j.issn.1000-1298.2022.11.023
|
[13] |
齐钊. 基于高分辨率遥感影像的湖滨带土地覆被变化检测方法研究[D]. 连云港: 江苏海洋大学, 2022.
|
[14] |
张静, 倪金, 马诗敏, 等. 基于GIS的大连市金普新区洪水淹没分析[J]. 地质与资源, 2021, 30(5): 590-594.
|
[15] |
ROUSE J W, HAAS R H , SCHELL J A , et al. Monitoring vegetation systems in the Great Plains with ERTS [C]//Third ERTS Symposium. Washington DC: NASA Spec Publ, 1974: 309-317.
|
[16] |
GITELSON A A , KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58: 289-298
|
[17] |
彭燕, 何国金, 张兆明, 等. 中国区域Landsat遥感指数产品[J]. 中国科学数据(中英文网络版), 2020, 5(4): 83-90.
|
[18] |
BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167. doi: 10.1023/A:1009715923555
|
[19] |
BIAU G, SCORNET E. A random forest guided tour[J]. Test, 2016, 25(2): 197-227. doi: 10.1007/s11749-016-0481-7
|
[20] |
NASIRI J, KHIYABANI F M. A whale optimization algorithm (WOA) approach for clustering[J]. Cogent Mathematics & Statistics, 2018, 5(1): 1483565.
|
[21] |
张伟萍, 付民, 张海燕, 等. 改进的WOA-VMD算法在水声信号去噪中的应用[J]. 中国海洋大学学报(自然科学版), 2023, 53(1): 138-146.
|
[22] |
赵丙秀, 董宁. 基于WOA-BP神经网络下马铃薯产量预测分析模型[J]. 农机化研究, 2024, 46(3): 47-51. doi: 10.3969/j.issn.1003-188X.2024.03.008
|
1. |
田筱,涂德辉,周鹏,刘立波,李伟,肖玖军,邢丹. 辣椒根系抵御镉胁迫的抗氧化酶及亚细胞镉分布的响应规律. 江苏农业科学. 2025(01): 217-225 .
![]() | |
2. |
黄活志,刘洋,陈阿,陈康,王秀荣. 接种丛枝菌根真菌促进磷高效基因型大豆生长和磷吸收. 植物营养与肥料学报. 2024(12): 2354-2365 .
![]() | |
3. |
韩俊艳,王敬言,刘诗琦,冷玉莹,何进,林楚航. 重金属镉胁迫对大豆种子萌发与幼苗生长的影响. 沈阳大学学报(自然科学版). 2023(02): 108-115 .
![]() | |
4. |
张威,杜婕,黄亚群. 植物中过表达MT转录因子调控镉胁迫响应的Meta分析. 河北农业大学学报. 2022(01): 30-38 .
![]() | |
5. |
张晓晴,李壮壮,陈世宝,孟昱,任大军,张淑琴. 灌木幼苗对镉毒害的敏感性差异. 中国农业科技导报. 2022(04): 173-184 .
![]() | |
6. |
阮可瑾,谢宝玥,邓应生,冯嘉仪,庄玉婷,吴道铭,曾曙才. 铁冬青幼苗对污染土壤中铅、镉的耐受、吸收和累积. 华南农业大学学报. 2022(03): 50-58 .
![]() | |
7. |
罗莎莉,王幼娟,陆星,陈康,王秀荣. 耐镉促生菌株的分离鉴定及对大豆的促生效应. 微生物学通报. 2022(08): 3137-3149 .
![]() | |
8. |
杨国玲,邓璐璐,陈康,王幼娟,王秀荣. 低磷条件下接种丛枝菌根真菌对大豆生长和磷吸收的影响. 华南农业大学学报. 2021(04): 42-50 .
![]() | |
9. |
燕辉,王雪芹,代智光. 镉胁迫对大豆幼苗生理特性的影响. 中国土壤与肥料. 2021(06): 269-275 .
![]() |