Citation: | CHEN Shengde, CHEN Yigang, XU Xiaojie, et al. Monitoring of corn leaf area index based on multispectral remote sensing of UAV[J]. Journal of South China Agricultural University, 2024, 45(4): 608-617. DOI: 10.7671/j.issn.1001-411X.202310025 |
In order to achieve a rapid estimation of the leaf area index (LAI) of maize, this study explores a more efficient monitoring model for maize LAI estimation based multispectral remote sensing of unmanned aerial vehicle (UAV).
This study focused on maize plants throughout their entire growth cycle. Multispectral imagery of maize plants was acquired using UAV, and maize LAI were collected in field. The quantitative relationship between vegetation index and maize LAI was investigated using multispectral information to select relevant vegetation indices. Multiple linear stepwise regression, support vector machine regression (SVM), random forest regression (RF), and a random forest algorithm optimized using whale optimization algorithm (WOA-RF) were used to construct maize LAI prediction models, respectively. The best prediction model was selected on the basis of comparison.
The vegetation indices of NDVI, NDRE, EVI and CIG were highly correlated with LAI (P < 0.01). The models of multiple linear regression, SVM, RF, and WOA-RF were constructed, with R-squared values of 0.873 2, 0.878 0, 0.917 7, and 0.940 8 respectively, and the root mean square error (RMSE) values of 0.277 5, 0.236 5, 0.209 0, and 0.128 7 respectively.
The prediction model of maize LAI based on WOA-RF provides a high level of accuracy, which can meet the requirement for maize production. It can be used to guide planting management of maize during the growth period.
[1] |
李志坚, 谷云松, 贺云林, 等. 湘南地区甜玉米优质高产栽培技术[J]. 农业科技通讯, 2023(2): 177-179.
|
[2] |
徐春光. 诸城市植保无人机飞防作业快速发展[J]. 农机质量与监督, 2022(1): 28.
|
[3] |
许鹤. 农作物灾害损失评定遥感方法研究[J]. 农业与技术, 2023, 43(8): 12-15.
|
[4] |
CASANOVA D, EPEMA G F, GOUDRIAAN J. Monitoring rice reflectance at field level for estimating biomass and LAI[J]. Field Crops Research, 1998, 55(1/2): 83-92.
|
[5] |
MORIONDO M, MASELLI F, BINDI M. A simple model of regional wheat yield based on NDVI data[J]. European Journal of Agronomy, 2007, 26(3): 266-274. doi: 10.1016/j.eja.2006.10.007
|
[6] |
杨贵军, 李长春, 于海洋, 等. 农用无人机多传感器遥感辅助小麦育种信息获取[J]. 农业工程学报, 2015, 31(21): 184-190.
|
[7] |
邵国敏, 王亚杰, 韩文霆. 基于无人机多光谱遥感的夏玉米叶面积指数估算方法[J]. 智慧农业(中英文), 2020, 2(3): 118-128.
|
[8] |
张瑾. 基于无人机多光谱影像的夏玉米叶面积指数估测模型研究[D]. 太原: 山西农业大学, 2022.
|
[9] |
孙诗睿, 赵艳玲, 王亚娟, 等. 基于无人机多光谱遥感的冬小麦叶面积指数反演[J]. 中国农业大学学报, 2019, 24(11): 51-58. doi: 10.11841/j.issn.1007-4333.2019.11.06
|
[10] |
HE B, JIA B, ZHAO Y, et al. Estimate soil moisture of maize by combining support vector machine and chaotic whale optimization algorithm[J]. Agricultural Water Management, 2022, 267: 107618 doi: 10.1016/j.agwat.2022.107618
|
[11] |
刘帅兵, 金秀良, 冯海宽, 等. 病害胁迫下玉米LAI遥感反演研究[J]. 农业机械学报, 2023, 54(3): 246-258.
|
[12] |
王圆, 毕玉革. 基于无人机高光谱的荒漠草原地物精简学习分类模型[J]. 农业机械学报, 2022, 53(11): 236-243. doi: 10.6041/j.issn.1000-1298.2022.11.023
|
[13] |
齐钊. 基于高分辨率遥感影像的湖滨带土地覆被变化检测方法研究[D]. 连云港: 江苏海洋大学, 2022.
|
[14] |
张静, 倪金, 马诗敏, 等. 基于GIS的大连市金普新区洪水淹没分析[J]. 地质与资源, 2021, 30(5): 590-594.
|
[15] |
ROUSE J W, HAAS R H , SCHELL J A , et al. Monitoring vegetation systems in the Great Plains with ERTS [C]//Third ERTS Symposium. Washington DC: NASA Spec Publ, 1974: 309-317.
|
[16] |
GITELSON A A , KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58: 289-298
|
[17] |
彭燕, 何国金, 张兆明, 等. 中国区域Landsat遥感指数产品[J]. 中国科学数据(中英文网络版), 2020, 5(4): 83-90.
|
[18] |
BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167. doi: 10.1023/A:1009715923555
|
[19] |
BIAU G, SCORNET E. A random forest guided tour[J]. Test, 2016, 25(2): 197-227. doi: 10.1007/s11749-016-0481-7
|
[20] |
NASIRI J, KHIYABANI F M. A whale optimization algorithm (WOA) approach for clustering[J]. Cogent Mathematics & Statistics, 2018, 5(1): 1483565.
|
[21] |
张伟萍, 付民, 张海燕, 等. 改进的WOA-VMD算法在水声信号去噪中的应用[J]. 中国海洋大学学报(自然科学版), 2023, 53(1): 138-146.
|
[22] |
赵丙秀, 董宁. 基于WOA-BP神经网络下马铃薯产量预测分析模型[J]. 农机化研究, 2024, 46(3): 47-51. doi: 10.3969/j.issn.1003-188X.2024.03.008
|
1. |
马晓涓,王维英,张晓娟,才让卓玛,马祥,李思达,刘凯强. 基于无人机多源影像数据预测的高寒地区燕麦和豌豆混播生产性能综合评价. 青海畜牧兽医杂志. 2024(05): 33-40 .
![]() |