Citation: | YUE Xuejun, SONG Qingkui, LI Zhiqing, et al. Research status and prospect of crop information monitoring technology in field[J]. Journal of South China Agricultural University, 2023, 44(1): 43-56. DOI: 10.7671/j.issn.1001-411X.202209042 |
Using field monitoring technology to collect crop information, we can obtain the growth of field crops in real time and make corresponding decisions, which is important for improving the yield and quality of crops. The rapid monitoring, information acquisition and analysis of field crops have become a hot topic of research today because traditional crop field monitoring methods rely on manual sampling and measurement, which have some shortcomings of low efficiency, strong subjectivity and single characteristic. This paper analyzed the current research status of field crop monitoring technology at home and abroad in terms of three aspects of acquisition targets, monitoring platforms and different data (information) analysis methods, summarized the current problems of field crop monitoring in China. Finally, some suggestions of the future development were put forward in terms of monitoring technology innovation, information analysis technology, data (information) standardization and sharing, infrastructure and extension, with the aim of providing a reference for innovation and industrialization of field crop monitoring technology in China.
[1] |
岳学军, 蔡雨霖, 王林惠, 等. 农情信息智能感知及解析的研究进展[J]. 华南农业大学学报, 2020, 41(6): 14-28. doi: 10.7671/j.issn.1001-411X.202008044
|
[2] |
张泽, 吕新, 侯彤瑜. 浅析中国农业信息化技术发展现状及存在的问题[J]. 教育教学论坛, 2019(14): 267-268.
|
[3] |
TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world[J]. Science, 2010, 327(5967): 818-822. doi: 10.1126/science.1183700
|
[4] |
FURBANK R T. Plant phenomics: From gene to form and function[J]. Functional Plant Biology, 2009, 36(10/11): 5-6.
|
[5] |
姜玉英, 刘万才, 黄冲, 等. 2020年全国农作物重大病虫害发生趋势预报[J]. 中国植保导刊, 2020, 40(2): 37-39.
|
[6] |
刘杰, 姜玉英, 黄冲, 等. 2021年全国粮食作物重大病虫害发生趋势预报[J]. 中国植保导刊, 2021, 41(1): 37-39.
|
[7] |
2022年全国农作物重大病虫害发生趋势预报[J]. 中国植保导刊, 2022, 42(4): 107-108.
|
[8] |
赵春江. 智慧农业的发展现状与未来展望[J]. 华南农业大学学报, 2021, 42(6): 1-7.
|
[9] |
ADAMCHUK V I, PERK R L, SCHEPERS J S. Applications of remote sensing in site-specific management[M]. Nebraska : University of Nebraska, 2003: 693-702.
|
[10] |
BAO Y, NAKAMI A, TANG L. Development of a field robotic phenotyping system for sorghum biomass yield component traits characterization[C]//2014 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers (ASABE), 2014.
|
[11] |
BAO Y, TANG L. Field-based robotic phenotyping for sorghum biomass yield component traits characterization using stereo vision[J]. IFA-PapersOnLine, 2016, 49(16): 265-270. doi: 10.1016/j.ifacol.2016.10.049
|
[12] |
ZHU J M, INGRAM P A, BENFEY P N, et al. From lab to field, new approaches to phenotyping root system architecture[J]. Current Opinion in Plant Biology, 2011, 14(3): 310-317. doi: 10.1016/j.pbi.2011.03.020
|
[13] |
AMATO M, BITELLA G, ROSSI R, et al. Multi-electrode 3D resistivity imaging of alfalfa root zone[J]. European Journal of Agronomy, 2009, 31(4): 213-222. doi: 10.1016/j.eja.2009.08.005
|
[14] |
FETTER K C, EBERHARDT S, BARCLAY R S, et al. StomataCounter: A neural network for automatic stomata identification and counting[J]. New Phytologist, 2019, 223(3): 1671-1681. doi: 10.1111/nph.15892
|
[15] |
LIU X X, FU X, YU S, et al. Convolutional recurrent neural networks for observation-centered plant identification[J]. Journal of Electrical and Computer Engineering, 2018, 2018: 1-7.
|
[16] |
ZHU H Y, HUANG X Y, ZHANG S P, et al. Plant identification via multipath sparse coding[J]. Multimedia Tools and Applications, 2017, 76(3): 4599-4615. doi: 10.1007/s11042-016-3538-4
|
[17] |
蔡坤, 徐兴, 俞龙, 等. 基于LVDS传输线延时检测技术的土壤含水率传感器[J]. 农业机械学报, 2016, 47(12): 315-322. doi: 10.6041/j.issn.1000-1298.2016.12.039
|
[18] |
蔡坤, 岳学军, 洪添胜, 等. 基于RC网络相频特性的土壤含水率传感器设计[J]. 农业工程学报, 2013, 29(7): 36-43.
|
[19] |
BENEDET L, ACUÑA-GUZMAN S F, FARIA W M, et al. Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms[J]. Catena, 2021, 197: 105003. doi: 10.1016/j.catena.2020.105003
|
[20] |
董彭赓. 新型自动气象站在农业气象观测中的应用分析[J]. 农业灾害研究, 2021, 11(11): 83-84. doi: 10.3969/j.issn.2095-3305.2021.11.037
|
[21] |
李轩, 吴门新, 侯英雨, 等. 农业气象大数据共享平台设计与实现[J]. 中国农业气象, 2022, 43(8): 657-669. doi: 10.3969/j.issn.1000-6362.2022.08.006
|
[22] |
欧善国, 彭晓丹, 凌洋. 广州智慧农业气象服务平台设计与实现[J]. 气象科学, 2022, 42(2): 270-278.
|
[23] |
翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18. doi: 10.6041/j.issn.1000-1298.2021.07.001
|
[24] |
管泽鑫, 姚青, 杨保军, 等. 数字图像处理技术在农作物病虫草识别中的应用[J]. 中国农业科学, 2009, 42(7): 2349-2358. doi: 10.3864/j.issn.0578-1752.2009.07.012
|
[25] |
张竞成, 袁琳, 王纪华, 等. 作物病虫害遥感监测研究进展[J]. 农业工程学报, 2012, 28(20): 1-11.
|
[26] |
DELWICHE S R, KIM M S. Hyperspectral imaging for detection of scab in wheat[M]//Biological quality and precision agriculture II. Massachusetts State: SPIE, 2000: 13-20.
|
[27] |
HUANG W, LAMB D W, NIU Z, et al. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging[J]. Precision Agriculture, 2007, 8(4/5): 187-197.
|
[28] |
GRIFFEL L M, DELPARTE D, EDWARDS J. Using support vector machines classification to differentiate spectral signatures of potato plants infected with potato virus Y[J]. Computers and Electronics in Agriculture, 2018, 153: 318-324. doi: 10.1016/j.compag.2018.08.027
|
[29] |
KAUR R, KANG S S. An enhancement in classifier support vector machine to improve plant disease detection[C]//2015 IEEE 3rd International Conference on MOOCs, Innovation and Technology in Education (MITE). IEEE, 2015: 135-140.
|
[30] |
TURKOGLU M, HANBAY D. Plant disease and pest detection using deep learning-based features[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2019, 27(3): 1636-1651. doi: 10.3906/elk-1809-181
|
[31] |
LOUARGANT M, JONES G, FAROUX R, et al. Unsupervised classification algorithm for early weed detection in row-crops by combining spatial and spectral information[J]. Remote Sensing, 2018, 10(671): 1-18.
|
[32] |
HALL D, DAYOUB F, PEREZ T, et al. A rapidly deployable classification system using visual data for the application of precision weed management[J]. Computers and Electronics in Agriculture, 2018, 148: 107-120. doi: 10.1016/j.compag.2018.02.023
|
[33] |
余小东, 杨孟辑, 张海清, 等. 基于迁移学习的农作物病虫害检测方法研究与应用[J]. 农业机械学报, 2020, 51(10): 252-258. doi: 10.6041/j.issn.1000-1298.2020.10.028
|
[34] |
赵静, 李志铭, 鲁力群, 等. 基于无人机多光谱遥感图像的玉米田间杂草识别[J]. 中国农业科学, 2020, 53(8): 1545-1555.
|
[35] |
彭文, 兰玉彬, 岳学军, 等. 基于深度卷积神经网络的水稻田杂草识别研究[J]. 华南农业大学学报, 2020, 41(6): 75-81.
|
[36] |
LEHOTAY S J, SON K A, KWON H, et al. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables[J]. Journal of Chromatography A, 2010, 1217(16): 2548-2560. doi: 10.1016/j.chroma.2010.01.044
|
[37] |
刘美辰. 石墨炉原子吸收光谱法和胶体金快速定量法测定粮食中铅的对比研究[J]. 食品研究与开发, 2019, 40(9): 149-153. doi: 10.3969/j.issn.1005-6521.2019.09.025
|
[38] |
JIN M, LIU X N, WU L, et al. An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 41: 118-129. doi: 10.1016/j.jag.2015.04.023
|
[39] |
ZHOU X, ZHENG H B, XU X Q, et al. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 246-255. doi: 10.1016/j.isprsjprs.2017.05.003
|
[40] |
OLSON D, CHATTERJEE A, FRANZEN D W, et al. Relationship of drone-based vegetation indices with corn and sugarbeet yields[J]. Agronomy Journal, 2019, 111(5): 2545-2557. doi: 10.2134/agronj2019.04.0260
|
[41] |
DUAN B, FANG S, ZHU R, et al. Remote estimation of rice yield with unmanned aerial vehicle (UAV) data and spectral mixture analysis[J]. Frontiers in Plant Science, 2019, 10: 1-14.
|
[42] |
IHUOMA S O, MADRAMOOTOO C A. Recent advances in crop water stress detection[J]. Computers and Electronics in Agriculture, 2017, 141: 267-275. doi: 10.1016/j.compag.2017.07.026
|
[43] |
ROMERO M, LUO Y C, SU B F, et al. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management[J]. Computers and Electronics in Agriculture, 2018, 147: 109-117. doi: 10.1016/j.compag.2018.02.013
|
[44] |
甘平, 董燕生, 孙林, 等. 基于无人机载LiDAR数据的玉米涝灾灾情评估[J]. 中国农业科学, 2017, 50(15): 2983-2992.
|
[45] |
董锦绘, 杨小冬, 高林, 等. 基于无人机遥感影像的冬小麦倒伏面积信息提取[J]. 黑龙江农业科学, 2016(10): 147-152.
|
[46] |
HAULE J, MICHAEL K. Deployment of wireless sensor networks (WSN) in automated irrigation management and scheduling systems: A review[C]//Proceedings of the 2nd Pan African International Conference On Science, Computing and Telecommunications (PACT 2014). IEEE, 2014: 86-91.
|
[47] |
王林惠, 兰玉彬, 刘志壮, 等. 便携式柑橘虫害实时检测系统的研制与试验[J]. 农业工程学报, 2021, 37(9): 282-288.
|
[48] |
岳学军, 刘永鑫, 洪添胜, 等. 基于土壤墒情的自动灌溉控制系统设计与试验[J]. 农业机械学报, 2013, 44(S2): 241-246.
|
[49] |
徐兴, 岳学军, 林涛. 基于ZigBee网络的水环境无线监测系统设计[J]. 华南农业大学学报, 2013, 34(4): 593-597.
|
[50] |
AZFAR S, NADEEM A, BASIT A. Pest detection and control techniques using wireless sensor network: A review[J]. Journal of Entomology and Zoology Studies, 2015, 3(2): 92-99.
|
[51] |
HE J L, WANG J L, HE D X, et al. The design and implementation of an integrated optimal fertilization decision support system[J]. Mathematical and Computer Modelling, 2011, 54(3/4): 1167-1174.
|
[52] |
KOLOKOTSA D, SARIDAKIS G, DALAMAGKIDIS K, et al. Development of an intelligent indoor environment and energy management system for greenhouses[J]. Energy Conversion and Management, 2010, 51(1): 155-168. doi: 10.1016/j.enconman.2009.09.007
|
[53] |
XIANG H, TIAN L. Development of autonomous unmanned helicopter based agricultural remote sensing system[C]//2006 ASAE Annual International Meeting. Portland: American Society of Agricultural and Biological Engineers, 2006.
|
[54] |
程曼, 袁洪波, 蔡振江, 等. 田间作物高通量表型信息获取与分析技术研究进展[J]. 农业机械学报, 2020, 51(S1): 314-324. doi: 10.6041/j.issn.1000-1298.2020.S1.037
|
[55] |
张保辉, 查燕, 史云. 智慧农业装备依赖进口情况、潜在风险及对策建议[J]. 中国农业信息, 2019, 31(4): 113-120. doi: 10.12105/j.issn.1672-0423.20190412
|
[56] |
李红军, 李佳珍, 雷玉平, 等. 无人机搭载数码相机航拍进行小麦、玉米氮素营养诊断研究[J]. 中国生态农业学报, 2017, 25(12): 1832-1841. doi: 10.13930/j.cnki.cjea.170996
|
[57] |
周元琦, 王敦亮, 陈晨, 等. 基于无人机RGB图像颜色及纹理特征指数的小麦产量预测[J]. 扬州大学学报(农业与生命科学版), 2021, 42(3): 110-116. doi: 10.16872/j.cnki.1671-4652.2021.03.017
|
[58] |
田婷, 张青, 张海东. 无人机遥感在作物监测中的应用研究进展[J]. 作物杂志, 2020(5): 1-8.
|
[59] |
束美艳, 陈向阳, 王喜庆, 等. 基于高光谱数据的玉米叶面积指数和生物量评估[J]. 智慧农业(中英文), 2021, 3(1): 29-39.
|
[60] |
冯伟, 姚霞, 朱艳, 等. 基于高光谱遥感的小麦叶片含氮量监测模型研究[J]. 麦类作物学报, 2008, 28(5): 851-860.
|
[61] |
李真, 史智兴, 王成, 等. 红外热成像技术在作物胁迫检测方面的应用[J]. 农机化研究, 2016, 38(1): 232-237.
|
[62] |
魏嘉呈, 刘俊岩, 何林, 等. 红外热成像无损检测技术研究发展现状[J]. 哈尔滨理工大学学报, 2020, 25(2): 64-72.
|
[63] |
甘海明, 岳学军, 洪添胜, 等. 基于深度学习的龙眼叶片叶绿素含量预测的高光谱反演模型[J]. 华南农业大学学报, 2018, 39(3): 102-110. doi: 10.7671/j.issn.1001-411X.2018.03.016
|
[64] |
张漫, 苗艳龙, 仇瑞承, 等. 基于车载三维激光雷达的玉米点云数据滤波算法[J]. 农业机械学报, 2019, 50(4): 170-178. doi: 10.6041/j.issn.1000-1298.2019.04.019
|
[65] |
HOFFER R M. Biological and physical considerations in applying computer-aided analysis techniques to remote sensor data[M]//SWAIN P H, DAVIS S M. Remote sensing: The quantitative approach. New York: McGraw-Hill Book Company, 1978: 227-289.
|
[66] |
FU Y Y, YANG G J, WANG J H, et al. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements[J]. Computers and Electronics in Agriculture, 2014, 100: 51-59. doi: 10.1016/j.compag.2013.10.010
|
[67] |
庄东英, 李卫国, 武立权. 冬小麦生物量卫星遥感估测研究[J]. 干旱区资源与环境, 2013, 27(10): 158-162. doi: 10.13448/j.cnki.jalre.2013.10.018
|
[68] |
HUNT E R, DORAISWAMY P C, MCMURTREY J E, et al. A visible band index for remote sensing leaf chlorophyll content at the canopy scale[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 103-112. doi: 10.1016/j.jag.2012.07.020
|
[69] |
李卫国, 王纪华, 赵春江, 等. 冬小麦抽穗期长势遥感监测的初步研究[J]. 江苏农业学报, 2007(5): 499-500. doi: 10.3969/j.issn.1000-4440.2007.05.026
|
[70] |
赵春江. 农业遥感研究与应用进展[J]. 农业机械学报, 2014, 45(12): 277-293. doi: 10.6041/j.issn.1000-1298.2014.12.041
|
[71] |
邢素丽, 张广录. 我国农业遥感的应用现状与展望[J]. 农业工程学报, 2003(6): 174-178. doi: 10.3321/j.issn:1002-6819.2003.06.041
|
[72] |
吴志峰, 骆剑承, 孙营伟, 等. 时空协同的精准农业遥感研究[J]. 地球信息科学学报, 2020, 22(4): 731-742. doi: 10.12082/dqxxkx.2020.190726
|
[73] |
张传波, 李卫国, 张宏, 等. 遥感光谱指标和神经网络结合的冬小麦地上部生物量估测[J]. 麦类作物学报, 2022, 42(5): 631-639. doi: 10.7606/j.issn.1009-1041.2022.05.14
|
[74] |
张晓春, 刘海若, 严忆辉, 等. 基于物候特征的农田土壤表层含水率遥感反演[J]. 灌溉排水学报, 2021, 40(10): 1-9. doi: 10.13522/j.cnki.ggps.2021195
|
[75] |
DEERY D M, REBETZKE G J, JIMENEZ-BERNI J A, et al. Evaluation of the phenotypic repeatability of canopy temperature in wheat using continuous-terrestrial and airborne measurements[J]. Frontiers in Plant Science, 2019, 10: 875-893. doi: 10.3389/fpls.2019.00875
|
[76] |
REJEB A, ABDOLLAHI A, REJEB K, et al. Drones in agriculture: A review and bibliometric analysis[J]. Computers and Electronics in Agriculture, 2022, 198: 107017. doi: 10.1016/j.compag.2022.107017
|
[77] |
郭亚东. 无人机低空遥感技术应用研究[J]. 产业与科技论坛, 2022, 21(3): 37-38. doi: 10.3969/j.issn.1673-5641.2022.03.015
|
[78] |
樊湘鹏, 周建平, 许燕. 无人机低空遥感监测农情信息研究进展[J]. 新疆大学学报(自然科学版)(中英文), 2021, 38(5): 623-631.
|
[79] |
岳学军, 王林惠, 兰玉彬, 等. 基于DCP和OCE的无人机航拍图像混合去雾算法[J]. 农业机械学报, 2016, 47(S1): 419-425.
|
[80] |
WANG L H, YUE X J, WANG H H, et al. Dynamic inversion of inland aquaculture water quality based on UAVs-WSN spectral analysis[J]. Remote Sensing, 2020, 12(3): 1-18. doi: 10.3390/rs12030402
|
[81] |
岳学军, 全东平, 洪添胜, 等. 不同生长期柑橘叶片磷含量的高光谱预测模型[J]. 农业工程学报, 2015, 31(8): 207-213.
|
[82] |
黄双萍, 岳学军, 洪添胜, 等. 不同物候期柑橘叶片钾素水平预测建模[J]. 江苏大学学报(自然科学版), 2013, 34(5): 529-535.
|
[83] |
岳学军, 全东平, 洪添胜, 等. 柑橘叶片叶绿素含量高光谱无损检测模型[J]. 农业工程学报, 2015, 31(1): 294-302. doi: 10.3969/j.issn.1002-6819.2015.01.039
|
[84] |
岳学军, 全东平, 洪添胜, 等. 基于流形学习算法的柑橘叶片氮含量光谱估测模型[J]. 农业机械学报, 2015, 46(6): 244-250. doi: 10.6041/j.issn.1000-1298.2015.06.035
|
[85] |
张宏鸣, 谭紫薇, 韩文霆, 等. 基于无人机遥感的玉米株高提取方法[J]. 农业机械学报, 2019, 50(5): 241-250.
|
[86] |
樊鸿叶, 李姚姚, 卢宪菊, 等. 基于无人机多光谱遥感的春玉米叶面积指数和地上部生物量估算模型比较研究[J]. 中国农业科技导报, 2021, 23(9): 112-120.
|
[87] |
陈志超, 蒋贵印, 张正, 等. 基于无人机高光谱遥感的春玉米氮营养指数反演[J]. 河南理工大学学报(自然科学版), 2022, 41(3): 81-89.
|
[88] |
史东旭, 高德民, 薛卫, 等. 基于物联网和大数据驱动的农业病虫害监测技术[J]. 南京农业大学学报, 2019, 42(5): 967-974. doi: 10.7685/jnau.201812026
|
[89] |
袁培森, 薛铭家, 熊迎军, 等. 基于无人机高通量植物表型大数据分析及应用研究综述[J]. 农业大数据学报, 2021, 3(3): 62-75. doi: 10.19788/j.issn.2096-6369.210307
|
[90] |
谢芳. 基于物联网和人工智能的农业无人机路径规划系统[J]. 农机化研究, 2023, 45(6): 30-33. doi: 10.13427/j.cnki.njyi.2023.06.029
|
[91] |
黄进良徐新刚吴炳方. 农情遥感信息与其他农情信息的对比分析[J]. 遥感学报, 2004, 8(6): 655-663. doi: 10.11834/jrs.20040616
|
[92] |
罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17. doi: 10.7671/j.issn.1001-411X.202108040
|
[93] |
THOMPSON A L, THORP K R, CONLEY M M, et al. Comparing nadir and multi-angle view sensor technologies for measuring in-field plant height of upland cotton[J]. Remote Sensing, 2019, 11(6): 1-19. doi: 10.3390/rs11060700
|
[94] |
唐政, 余越, 刘羽飞, 等. 田间作物表型获取无人车平台主体结构设计与优化[J/OL]. 浙江大学学报(农业与生命科学版), (2022-05-19) [2022-09-28]. https://kns.cnki.net/kcms/detail/33.1247.S.20220518.2107.002.html.
|
[95] |
卢少志, 杨蒙, 杨万能, 等. 田间作物表型检测平台设计与试验[J]. 华中农业大学学报, 2021, 40(4): 209-218. doi: 10.13300/j.cnki.hnlkxb.2021.04.025
|
[96] |
康凯, 袁洪波, 肖雪朋, 等. 自走式表型平台及在线自整定PID速度控制研究[J]. 农机化研究, 2022, 44(4): 19-25. doi: 10.3969/j.issn.1003-188X.2022.04.004
|
[97] |
YOUNG S N, KAYACAN E, PESCHEL J M. Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum[J]. Precision Agriculture, 2019, 20(4): 697-722. doi: 10.1007/s11119-018-9601-6
|
[98] |
GRIMSTAD L, FROM P J. Software components of the Thorvald II modular robot[J]. Modeling Identification and Control, 2018, 39(3): 157-165. doi: 10.4173/mic.2018.3.2
|
[99] |
KIRCHGESSNER N, LIEBISCH F, YU K, et al. The ETH field phenotyping platform FIP: A cable-suspended multi-sensor system[J]. Functional Plant Biology, 2017, 44(1): 154-168. doi: 10.1071/FP16165
|
[100] |
BAI G, GE Y F, SCOBY D, et al. NU-Spidercam: A large-scale, cable-driven, integrated sensing and robotic system for advanced phenotyping, remote sensing, and agronomic research[J]. Computers and Electronics in Agriculture, 2019, 160: 71-81. doi: 10.1016/j.compag.2019.03.009
|
[101] |
GARCIA-SANCHEZ A J, GARCIA-SANCHEZ F, GARCIA-HARO J. Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops[J]. Computers and Electronics in Agriculture, 2011, 75(2): 288-303. doi: 10.1016/j.compag.2010.12.005
|
[102] |
DIAZ S E, PEREZ J C, MATEOS A C, et al. A novel methodology for the monitoring of the agricultural production process based on wireless sensor networks[J]. Computers and Electronics in Agriculture, 2011, 76(2): 252-265. doi: 10.1016/j.compag.2011.02.004
|
[103] |
ZHU B Q, HAN W T, WANG Y, et al. Development and evaluation of a wireless sensor network monitoring system in various agricultural environments[J]. Journal of Microwave Power and Electromagnetic Energy, 2014, 48(3): 170-183. doi: 10.1080/08327823.2014.11689881
|
[104] |
GEORGIEVA T, PASKOVA N, GAAZI B, et al. Design of wireless sensor network for monitoring of soil quality parameters[J]. Agriculture & Agricultural Science Procedia, 2016, 10: 431-437.
|
[105] |
兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019, 1(2): 1-19.
|
[106] |
TAHIR M N, NAQVI S, LAN Y, et al. Real time monitoring chlorophyll content based on vegetation indices derived from multispectral UAVs in the kinnow orchard[J]. International Journal of Precision Agricultural Aviation, 2018, 1(1): 24-32.
|
[107] |
王超, 王建明, 冯美臣, 等. 基于多变量统计分析的冬小麦长势高光谱估算研究[J]. 光谱学与光谱分析, 2018, 38(5): 1520-1525.
|
[108] |
FU P, MEACHAM-HENSOLD K, GUAN K, et al. Estimating photosynthetic traits from reflectance spectra: a synthesis of spectral indices, numerical inversion, and partial least square regression[J]. Plant Cell & Environment, 2020, 43(5): 1241-1258.
|
[109] |
TARDIEU F, CABRERA-BOSQUET L, PRIDMORE T, et al. Plant phenomics, from sensors to knowledge[J]. Current Biology, 2017, 27(15): 770-783. doi: 10.1016/j.cub.2017.05.055
|
[110] |
周济, TARDIEU F, PRIDMORE T, 等. 植物表型组学: 发展、现状与挑战[J]. 南京农业大学学报, 2018, 41(4): 580-588. doi: 10.7685/jnau.201805100
|
[111] |
杨涛, 李晓晓. 机器视觉技术在现代农业生产中的研究进展[J]. 中国农机化学报, 2021, 42(3): 171-181. doi: 10.13733/j.jcam.issn.2095-5553.2021.03.024
|
[112] |
ZHANG C, SI Y, LAMKEY J, et al. High-throughput phenotyping of seed/seedling evaluation using digital image analysis[J]. Agronomy, 2018, 8(5): 63. doi: 10.3390/agronomy8050063
|
[113] |
YAO Q, XIAN D X, LIU Q J, et al. Automated counting of rice planthoppers in paddy fields based on image processing[J]. Journal of Integrative Agriculture, 2014, 13(8): 1736-1745. doi: 10.1016/S2095-3119(14)60799-1
|
[114] |
刁智华, 袁万宾, 罗雅雯, 等. 基于图像处理的小麦白粉病病斑生长模型构建[J]. 中国农机化学报, 2019, 40(6): 158-161. doi: 10.13733/j.jcam.issn.2095-5553.2019.06.30
|
[115] |
苗中华, 余孝有, 徐美红, 等. 基于图像处理多算法融合的杂草检测方法及试验[J]. 智慧农业(中英文), 2020, 2(4): 103-115.
|
[116] |
任全会, 杨保海. 图像处理技术在田间杂草识别中应用研究[J]. 中国农机化学报, 2020, 41(6): 154-158.
|
[117] |
刘丹, 诸叶平, 刘海龙, 等. 植物三维可视化研究进展[J]. 中国农业科技导报, 2015, 17(1): 23-31. doi: 10.13304/j.nykjdb.2014.579
|
[118] |
季富华, 刘佳, 王利民. 农作物类型遥感识别算法及国产高分卫星应用示例[J]. 中国农业资源与区划, 2021, 42(7): 254-268.
|
[119] |
马怡茹, 吕新, 易翔, 等. 基于机器学习的棉花叶面积指数监测[J]. 农业工程学报, 2021, 37(13): 152-162. doi: 10.11975/j.issn.1002-6819.2021.13.018
|
[120] |
杨明欣, 高鹏, 陈文彬, 等. 基于机器学习的油青菜心水分胁迫研究[J]. 华南农业大学学报, 2021, 42(5): 117-126.
|
[121] |
BAEK I, KIM M S, CHO B K, et al. Selection of optimal hyperspectral wavebands for detection of discolored, diseased rice seeds[J]. Applied Sciences, 2019, 9(5): 1027. doi: 10.3390/app9051027
|
[122] |
郭祥云, 台海江. 深度学习在大田种植中的应用及展望[J]. 中国农业大学学报, 2019, 24(1): 119-129. doi: 10.11841/j.issn.1007-4333.2019.01.16
|
[123] |
GRINBLAT G L, UZAL L C, LARESE M G, et al. Deep learning for plant identification using vein morphological patterns[J]. Computers and Electronics in Agriculture, 2016, 127: 418-424. doi: 10.1016/j.compag.2016.07.003
|
[124] |
卢涵宇, 胡超, 张涛, 等. 基于深度学习的高分辨率遥感影像分类研究[J]. 广西大学学报(自然科学版), 2020, 45(2): 328-335.
|
[125] |
SLADOJEVIC S, ARSENOVIC M, ANDERLA A, et al. Deep neural networks based recognition of plant diseases by leaf image classification[J/OL]. Computational Intelligence and Neuroscience, (2016-05-29)[2022-09-28]. http://dx. doi.org/10.1155/2016/3289801.
|
[126] |
朱允君. 大数据在智慧农业中研究与应用展望[J]. 中国新通信, 2020, 22(16): 108. doi: 10.3969/j.issn.1673-4866.2020.16.099
|
[127] |
BHAT S A, HUANG N F. Big data and AI revolution in precision agriculture: Survey and challenges[J]. IEEE Access, 2021, 9: 110209-110222. doi: 10.1109/ACCESS.2021.3102227
|
[128] |
孙九林, 李灯华, 许世卫, 等. 农业大数据与信息化基础设施发展战略研究[J]. 中国工程科学, 2021, 23(4): 10-18.
|
[129] |
陈桂芬, 李静, 陈航, 等. 大数据时代人工智能技术在农业领域的研究进展[J]. 吉林农业大学学报, 2018, 40(4): 502-510.
|
[130] |
何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4): 327-336. doi: 10.3969/j.issn.1003-6059.2014.04.007
|
[131] |
贾继增, 高丽锋, 赵光耀, 等. 作物基因组学与作物科学革命[J]. 中国农业科学, 2015, 48(17): 3316-3347.
|
[132] |
WU F, LI A, HE S, et al. Research on measurement and control system of common parameters of agricultural equipment based on wireless transmission[J]. International Journal of Agricultural and Environmental Information Systems, 2021, 12(2): 73-86.
|
[133] |
ROUKH A, FOTE F N, MAHMOUDI S A, et al. Big data processing architecture for smart farming[J]. Procedia Computer Science, 2020, 177: 78-85. doi: 10.1016/j.procs.2020.10.014
|
[134] |
TUMMERS J, KASSAHUN A, TEKINERDOGAN B. Reference architecture design for farm management information systems: A multi-case study approach[J]. Precision Agriculture, 2021, 22(1): 22-50. doi: 10.1007/s11119-020-09728-0
|
[135] |
江顺, 陈荣宇, 林伟君, 等. 基于大数据的智能农业云服务平台设计与实现[J]. 安徽农业科学, 2022, 50(16): 190-197.
|
[1] | LIU Xiaozhou, FAN Yanping, YU Rangcai, YUE Yuechong, LI Xinyue, YU Yunyi. Effect of ethylene and 1-MCP on the terpenoid fragrance of Hedychium coronarium and the expressions of related genes[J]. Journal of South China Agricultural University, 2018, 39(4): 68-72. DOI: 10.7671/j.issn.1001-411X.2018.04.011 |
[2] | ZHANG Xin, QI Yu-jie, YANG Xia, JIA Hui-juan. Evaluation of Maturity of Peach by Electronic Nose[J]. Journal of South China Agricultural University, 2012, 33(1): 23-27. DOI: 10.7671/j.issn.1001-411X.2012.01.005 |
[3] | NIE Qing-hua,FANG Mei-xia,LI Wei-min,XIE Liang,ZHANG Xi-quan. Electronic Cloning and Comparative Analysis of the Chicken pATGL Gene[J]. Journal of South China Agricultural University, 2008, 29(2): 94-98. DOI: 10.7671/j.issn.1001-411X.2008.02.023 |
[4] | ZHU Sheng-lin,XIAO De-qin,LIN Pi-yuan. Research and implementation on multisignature of electronic official documents based on XML[J]. Journal of South China Agricultural University, 2005, 26(1): 115-118. DOI: 10.7671/j.issn.1001-411X.2005.01.031 |
[5] | HU Wei-rong,ZHANG Zhao-qi,JI Zuo-liang,LIU Shun-zhi. Effect of chilling injury on membrane lipid peroxidation and activities of cell defense enzyme in litchi pericarp[J]. Journal of South China Agricultural University, 2004, 25(3): 6-9. DOI: 10.7671/j.issn.1001-411X.2004.03.002 |
[6] | Effect of Acetochlor on the Ethylene Release Rate of Rice Seedlings[J]. Journal of South China Agricultural University, 2003, 24(1): 53-55. DOI: 10.7671/j.issn.1001-411X.2003.01.015 |
[7] | PANG Xue qun 1,ZHANG Zhao qi 2,DUAN Xue wu 2,JI Zuo liang 2. The Effects of Ethylene and 1 - Methycyclopropene on Pericarp Browning of Postharvest Lychee Fruit[J]. Journal of South China Agricultural University, 2001, 22(4): 11-14. DOI: 10.7671/j.issn.1001-411X.2001.04.004 |
[8] | CHEN Jian-xun,XU Zhi-qiang,LIAO Yi,LIU Wei. The Role of Ethylene and ABA in Cut Hedychium coronarium Spike Senescence[J]. Journal of South China Agricultural University, 2000, (1): 91-92. DOI: 10.7671/j.issn.1001-411X.2000.01.029 |
[9] | Dai Hongfen,Ji Zuoliang,Zhang Zhaoqi. The Effect of Intermittent Warming on Chilling Injury and Metabolism of Glutathione、Ascorbic Acid of Mango Fruit[J]. Journal of South China Agricultural University, 1999, (2): 51-54. |
[10] | Huang Xiaoyu Kang Demei Ji Zuoliang. THE OPTIMUM STORAGE TEMPERATURE FOR LITCHI FRUITS AND CHILLING INJURY TO THEM[J]. Journal of South China Agricultural University, 1990, (3): 13-18. |