DILIXIATI Yimamu, ZHOU Jianping, XU Yan, et al. Cotton pest monitoring based on Logistic algorithm and remote sensing image[J]. Journal of South China Agricultural University, 2022, 43(2): 87-95. DOI: 10.7671/j.issn.1001-411X.202106004
    Citation: DILIXIATI Yimamu, ZHOU Jianping, XU Yan, et al. Cotton pest monitoring based on Logistic algorithm and remote sensing image[J]. Journal of South China Agricultural University, 2022, 43(2): 87-95. DOI: 10.7671/j.issn.1001-411X.202106004

    Cotton pest monitoring based on Logistic algorithm and remote sensing image

    More Information
    • Received Date: June 02, 2021
    • Available Online: May 17, 2023
    • Objective 

      The purpose of this article is to monitor cotton pest in field based on Logistic algorithms and multi-spectral remote sensing images.

      Method 

      The cotton areas with insect pests were selected as the research object. The multi-spectral remote sensing images of cotton field were acquired by UAV, and then pre-processed. Based on the spectral characteristics of cotton pests, the Logistic regression model was constructed by the reflectivity of pest-sensitive band and vegetation index to identify and monitor cotton pests.

      Result 

      The cotton aphid, cotton red spider mite, and cotton bollworm identification models constructed by the soil adjusted vegetation index (SAVI) model and the normalized vegetation index (NDVI) model were the optimal models, and their accuracy for training sample and test sample reached 93.7% and 90.5% respectively the recall rate and F1 value were 96.6% and 93.5% respectively and the determination coeffecients of recognition models for three types of pests were 0.942, 0.851 and 0.663 respectively.

      Conclusion 

      This model can identify the occurrence area of cotton aphid, cotton red spider mite and cotton bollworm, which can basically meet the requirements of precision plant protection operation in cotton field.

    • [1]
      乔艳艳, 吴洁, 操宇林, 等. 不同药剂处理对棉种出苗及苗期病虫害发生的影响[J]. 安徽农业科学, 2020, 48(4): 125-127. doi: 10.3969/j.issn.0517-6611.2020.04.037
      [2]
      新疆农业科学院. 新疆棉花产量全国占比84.9%比重创新高[J]. 新疆农机化, 2020(1): 6.
      [3]
      杜江涛. 棉花灌溉决策指标研究[J]. 农业科学, 2021, 11(4): 6.
      [4]
      杨忠娜, 唐继军, 喻晓玲. 新疆棉花产业对国民经济的影响及对策研究[J]. 农业现代化研究, 2013, 34(3): 298-302.
      [5]
      宋桂红. 新疆奎屯垦区机采棉品种引用、推广现状及对棉花品质的影响[J]. 中国种业, 2016(8): 44-45.
      [6]
      王磊, 周建平, 许燕, 等. 农用无人机的应用现状与展望[J]. 农药, 2019, 58(9): 6-11.
      [7]
      崔美娜, 戴建国, 王守会, 等. 基于无人机多光谱影像的棉叶螨识别方法[J]. 新疆农业科学, 2018(8): 1457-1466.
      [8]
      兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019, 1(2): 1-19.
      [9]
      赵亮, 陈兵, 肖春华, 等. 棉花棉叶螨叶片遥感监测技术研究[J]. 甘肃农业大学学报, 2015(5): 94-99. doi: 10.3969/j.issn.1003-4315.2015.05.016
      [10]
      PRABHAKAR M, PRASAD Y G, THIRUPATHI M, et al. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae)[J]. Computers & Electronics in Agriculture, 2011, 79(2): 189-198.
      [11]
      竞霞, 黄文江, 琚存勇, 等. 基于PLS算法的棉花黄萎病高空间分辨率遥感监测[J]. 农业工程学报, 2010(8): 229-235. doi: 10.3969/j.issn.1002-6819.2010.08.039
      [12]
      胡根生, 吴问天, 罗菊花, 等. 结合HJ卫星影像和最小二乘孪生支持向量机的小麦蚜虫遥感监测[J]. 浙江大学学报(农业与生命科学版), 2017(2): 211-219.
      [13]
      STELLA I R, GHOSH M. Modeling and analysis of plant disease with delay and logistic growth of insect vector[J]. Communications in Mathematical Biology and Neuroscience, 2018: 2018.
      [14]
      冯炼, 吴玮, 陈晓玲, 等. 基于HJ卫星CCD数据的冬小麦病虫害面积监测[J]. 农业工程学报, 2010, 26(7): 213-219. doi: 10.3969/j.issn.1002-6819.2010.07.037
      [15]
      马勇, 徐鑫, 徐文君, 等. Logistic方程模拟森林病虫害发生[J]. 辽宁林业科技, 2001(3): 17-18. doi: 10.3969/j.issn.1001-1714.2001.03.008
      [16]
      MARCUS R. Deterministic and stochastic logistic models for describing increase of plant diseases[J]. 1991, 10(2): 155-159.
      [17]
      YANG C, EVERITT J H, FERNANDEZ C J. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot[J]. Biosystems Engineering, 2010, 107(2): 131-139. doi: 10.1016/j.biosystemseng.2010.07.011
      [18]
      张连翔, 惠兴学, 赵树清. 植物病害I-S关系:Logistic衍生模型的研究[J]. 沈阳农业大学学报, 2001(4): 270-273. doi: 10.3969/j.issn.1000-1700.2001.04.008
      [19]
      谭宏卫, 曾捷. Logistic回归模型的影响分析[J]. 数理统计与管理, 2013(3): 476-485.
      [20]
      LI Y X, SHI H M. Research on data processing of low altitude photogrammetry based on Pix4D[J]. International Journal of Intelligent Information and Management Science, 2020, 9(1): 195-197.
      [21]
      NISHAR A, RICHARDS S, BREEN D, et al. Thermal infrared imaging of geothermal environments and by an unmanned aerial vehicle (UAV): A case study of the Wairakei – Tauhara geothermal field, Taupo, New Zealand[J]. Renewable Energy, 2016, 86: 1256-1264. doi: 10.1016/j.renene.2015.09.042.
      [22]
      刘坦. Inpho、PhotoScan及Pix4D无人机正射影像处理软件对比[J]. 海峡科技与产业, 2017(11): 82-84. doi: 10.3969/j.issn.1006-3013.2017.11.031
      [23]
      刘世生, 王仁宗, 李叶民, 等. 一种基于卫星影像数据的新疆棉花区域识别方法及系统: CN111345214A[P]. 2020 - 06 - 30 [ 2020 - 03 - 04 ] .
      [24]
      杨杰, 张莹莹, 王建雄, 等. 利用NDVI与EVI再合成的植被指数算法[J]. 遥感信息, 2020, 35(5): 131-137.
      [25]
      邓江, 谷海斌, 王泽, 等. 基于无人机遥感的棉花主要生育时期地上生物量估算及验证[J]. 干旱地区农业研究, 2019, 37(5): 55-61. doi: 10.7606/j.issn.1000-7601.2019.05.09
      [26]
      唐亮, 何明珠, 许华, 等. 基于无人机低空遥感的荒漠植被覆盖度与归一化植被指数验证及其对水热梯度的响应[J]. 应用生态学报, 2020(1): 35-44.
      [27]
      贾洁琼, 刘万青, 孟庆岩, 等. 基于GF-1 WFV影像和机器学习算法的玉米叶面积指数估算[J]. 中国图象图形学报, 2018, 23(5): 107-117.
    • Related Articles

      [1]YANG Hailong, YANG Jiaheng, WANG Lei, CAI Jinyang. Phenotypic diversity evaluation of medium indica rice germplasm resources based on principal component analysis and cluster analysis[J]. Journal of South China Agricultural University, 2025, 46(4): 471-479. DOI: 10.7671/j.issn.1001-411X.202412004
      [2]GUO Lifen, DAI Mengyuan, GAO Mei, DENG Jianchuan, LI Wenchang. Genetic diversity analysis of main agronomic traits in Ricinus communis germplasm resources[J]. Journal of South China Agricultural University, 2017, 38(3): 32-38. DOI: 10.7671/j.issn.1001-411X.2017.03.006
      [3]DU Qingxin, WEI Yanxiu, LIU Panfeng, QING Jun, DU Hongyan. Principal component analysis and overall evaluation of amino acids in Eucommia ulmoides male flowers[J]. Journal of South China Agricultural University, 2017, 38(1): 76-81. DOI: 10.7671/j.issn.1001-411X.2017.01.013
      [4]ZHAO Yueling, LIN Yuling, CAO Liying, MA Li, CHEN Guifen. A Study of Soil Nutrients Characteristics Based on Principal Component and Cluster Analysis[J]. Journal of South China Agricultural University, 2013, 34(4): 484-488. DOI: 10.7671/j.issn.1001-411X.2013.04.008
      [5]ZHOU Bo, CHEN Xu-fei, ZHANG Cong-li, LI Jing-juan, ZHANG Jing, REN Zong-ling, ZHANG Chi, DAI Jun. Principal Component Analysis of Spatial and Temporal Evolution of Soil Fertility in Guangming New District,Shenzhen City[J]. Journal of South China Agricultural University, 2012, 33(4): 448-452. DOI: 10.7671/j.issn.1001-411X.2012.04.005
      [6]WANG Jing~1,CHEN Fei-peng~1,TU Jia-cai~. Cluster analysis of morphological traits of Gaozhou wild rice populations in Guangdong Province, China[J]. Journal of South China Agricultural University, 2004, 25(4): 63-66. DOI: 10.7671/j.issn.1001-411X.2004.04.016
      [7]LAN Lan,LIN Hui-huan,WENG Ya-biao. Application of Principal Component Analysis in Blood Biochemistry Research in Coccidia-Infected Broilers[J]. Journal of South China Agricultural University, 2000, (3): 87-90. DOI: 10.7671/j.issn.1001-411X.2000.03.024
      [8]Cai Kunzheng, Duan Shunshan, Chen Rongjun. Cluster Analysis of Soil Nutrient on Typical Hillsides in Guangdong[J]. Journal of South China Agricultural University, 1999, (4): 90-93.
      [9]Dai Suxian,Xie Chijun,Chen Dong,Zheng Ruqin,Xie Zhenlun. Principal Component Analysis on Aroma Constituents of Seven High-Aroma Pattern Oolong Teas[J]. Journal of South China Agricultural University, 1999, (1): 113-117.
      [10]Zhang Xiquan Wu Xianhua Wei Caifan. CLUSTER ANALYSIS OF THE FAMILIES IN YUEHUANO CHICKEH[J]. Journal of South China Agricultural University, 1990, (3): 19-25.

    Catalog

      YALIKUN Shawuti

      1. On this Site
      2. On Google Scholar
      3. On PubMed
      Article views (2121) PDF downloads (736) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return