• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LI Cheng’en, ZOU Xiangjun, LIAN Guoping, et al. Data set construction method of virtual assembly classification detection network for agricultural machinery[J]. Journal of South China Agricultural University, 2021, 42(6): 117-125. DOI: 10.7671/j.issn.1001-411X.202104005
Citation: LI Cheng’en, ZOU Xiangjun, LIAN Guoping, et al. Data set construction method of virtual assembly classification detection network for agricultural machinery[J]. Journal of South China Agricultural University, 2021, 42(6): 117-125. DOI: 10.7671/j.issn.1001-411X.202104005

Data set construction method of virtual assembly classification detection network for agricultural machinery

More Information
  • Received Date: April 06, 2021
  • Available Online: May 17, 2023
  • Objective 

    Virtual assembly can save production cost and improve the production efficiency of mechanical parts in industry. Due to the lack of the function of automatically creating collision body, the existing virtual reality engine can not completely restore the physical properties in the actual assembly process. Universaly building mechanical part grid entity is the important approach for improving practicability, accuracy and universality of virtual assembly.

    Method 

    The batch preprocessing algorithm and the improved sampling algorithm were designed for the batch agricultural machinery parts sampling. The image data set of three-dimensional model sample was constructed to train the artificial intelligence classification detection network, which can classify and detect the relevant parameters from the image samples, and realize the function of automatic construction of collision body.

    Result 

    The accuracy of the classification network trained by the optimized algorithm was more than 98% for the classification of parts from pictures, and more than 98% for the construction parameters of collision bodies from pictures. However, the network without optimized training did not converge.

    Conclusion 

    This method can effectively improve the recognition accuracy and training efficiency of the artificial intelligence classification detection network, and improve the modeling accuracy of the collision body by combining with the collision body parameterization construction program.

  • [1]
    邹湘军, 孙健, 何汉武, 等. 虚拟现实技术的演变发展与展望[J]. 系统仿真学报, 2004(9): 1905-1909. doi: 10.3969/j.issn.1004-731X.2004.09.015
    [2]
    陈燕, 曾泽钦, 王杰, 等. 收获机虚拟环境模型与仿真平台构建[J]. 农业机械学报, 2019, 50(7): 159-166. doi: 10.6041/j.issn.1000-1298.2019.07.016
    [3]
    邹湘军, 孙健, 何汉武. 虚拟环境下的生产线三维动态仿真及其建模[J]. 组合机床与自动化加工技术, 2004(4): 29-31. doi: 10.3969/j.issn.1001-2265.2004.04.012
    [4]
    SHAO N, DING X, LIU J. Tolerance analysis of spur gears based on skin model shapes and a boundary element method[J]. Mechanism and Machine Theory, 2020, 144: 103658. doi: 10.1016/j.mechmachtheory.2019.103658.
    [5]
    朱忠祥, 陈莉, 李山山, 等. 基于虚拟现实的联合收获机底盘虚拟装配关键技术[J]. 农业机械学报, 2013, 44(S2): 262-267.
    [6]
    林木, 张永春, 单丽君. 基于强化学习和虚拟现实技术的机械仿真教学系统研究[J]. 中国设备工程, 2020(22): 228-229. doi: 10.3969/j.issn.1671-0711.2020.22.132
    [7]
    刘伟良, 王红军, 邹湘军, 等. 基于知识的变速箱齿轮虚拟设计研究[J]. 华南农业大学学报, 2020, 41(4): 120-126. doi: 10.7671/j.issn.1001-411X.201912024
    [8]
    万华明, 杨丽, 邹湘军, 等. 基于VR技术的几何建模与优化[J]. 苏州科技学院学报(自然科学版), 2009, 26(4): 20-24.
    [9]
    李承恩, 邹湘军, 曾泽钦, 等. 基于虚拟碰撞体的弧齿锥齿轮网格实体构建算法[J]. 系统仿真学报, 2021, 33(4): 837-844.
    [10]
    LUO L, TANG Y, ZOU X, et al. Vision-based extraction of spatial information in grape clusters for harvesting robots[J]. Biosystems Engineering, 2016, 151: 90-104. doi: 10.1016/j.biosystemseng.2016.08.026
    [11]
    TANG Y, CHEN M, WANG C, et al. Recognition and localization methods  for  vision-based  fruit  picking  robots: A review[J]. Frontiers in Plant Science, 2020, 11: 510. doi: 10.3389/fpls.2020.00510.
    [12]
    TANG Y, LI L, WANG C, et al. Real-time detection of surface deformation and strain in recycled aggregate concrete-filled steel tubular columns via four-ocular vision[J]. Robotics and Computer-Integrated Manufacturing, 2019, 59: 36-46. doi: 10.1016/j.rcim.2019.03.001
    [13]
    ZHUANG C, MIAO T, LIU J, et al. The connotation of digital twin, and the construction and application method of shop-floor digital twin[J]. Robotics and Computer-Integrated Manufacturing, 2021, 68: 102075. doi: 10.1016/j.rcim.2020.102075.
    [14]
    陈燕, 王佳盛, 曾泽钦, 等. 大视场下荔枝采摘机器人的视觉预定位方法[J]. 农业工程学报, 2019, 35(23): 48-54. doi: 10.11975/j.issn.1002-6819.2019.23.006
    [15]
    邹湘军, 孙健, 何汉武, 等. 虚拟环境中多Agent决策的冲突证据合成研究[J]. 系统仿真学报, 2006(4): 1010-1014. doi: 10.3969/j.issn.1004-731X.2006.04.050
    [16]
    吴烽云, 张坡, 邹湘军, 等. 基于复杂部件虚拟装配的智能决策行为[J]. 自动化与信息工程, 2019, 40(5): 1-5. doi: 10.3969/j.issn.1674-2605.2019.05.001
    [17]
    ZOU X, HE H, WU Y, et al. Automatic 3D point cloud registration algorithm based on triangle similarity ratio consistency[J]. IET Image Processing, 2020, 14(14): 3314-3323.
    [18]
    高伟, 王昱霖, 宋笑迎, 等. 基于虚拟现实技术下深度学习环境的构建研究[J]. 软件, 2019, 40(5): 42-46. doi: 10.3969/j.issn.1003-6970.2019.05.009
    [19]
    梁锋, 钟建强, 罗培锋, 等. CATIA VBA二次开发在装配中批量搜索零件的应用[J]. 汽车实用技术, 2021, 46(1): 32-35.
    [20]
    齐江飞, 戈北京, 范颖超, 等. Inventor图纸编号和名称批量自动更改方法研究与应用[J]. 科技创新与应用, 2020(4): 167-169.
    [21]
    赵仁兵, 刘金科. 基于Unigraphics NX二次开发功能的批量后置软件[J]. 机械制造, 2020, 58(11): 53-58. doi: 10.3969/j.issn.1000-4998.2020.11.016
    [22]
    郭鹏, 张新艳, 余建波. 基于深度强化学习与有限元仿真集成的拉深成形控制[J]. 机械工程学报, 2020, 56(20): 47-58.
    [23]
    康文利, 周学辉. 虚拟装配快速碰撞干涉检验算法的研究[J]. 机械工程与自动化, 2010(4): 53-55. doi: 10.3969/j.issn.1672-6413.2010.04.019
    [24]
    张炫, 杨艳. 基于改进随机霍夫变换的直线提取算法[J]. 信息技术, 2017(12): 6-9.
    [25]
    张天煜, 冯华君, 徐之海, 等. 基于强边缘宽度直方图的图像清晰度指标[J]. 浙江大学学报(工学版), 2014, 48(2): 312-320.
  • Related Articles

    [1]YAO Lixian, ZHOU Changmin, HE Zhaohuan, LI Guoliang, YANG Baomei, BAI Cuihua. Nutrient accumulation characteristics of main litchi cultivars and their relationships with soil nutrients[J]. Journal of South China Agricultural University, 2020, 41(2): 40-47. DOI: 10.7671/j.issn.1001-411X.201904032
    [2]DONG Linsong, WU Zhenfang, CAI Gengyuan, ZHENG Enqin. Design and implement strategies for batch management in pig farms[J]. Journal of South China Agricultural University, 2019, 40(S1): 162-166.
    [3]ZHANG Xinming, CHENG Gen, XU Pengju, CAO Xianwei. Effects of straw mulching on nutrient release and nutrient balance in potato soil[J]. Journal of South China Agricultural University, 2019, 40(6): 59-66. DOI: 10.7671/j.issn.1001-411X.201811010
    [4]ZHANG Yajie, QIAN Huihui, LIU Kunping, SU Yirong, LI Fusheng. Effect of fertilization on soil active organic carbon and carbon pool management index under maize/soybean intercropping condition[J]. Journal of South China Agricultural University, 2016, 37(3): 29-36. DOI: 10.7671/j.issn.1001-411X.2016.03.005
    [5]WANG Daobo, LI Fusheng, ZHOU Ruiyang. Effects of NPK fertilizer management on nutrient use of kenaf,Hibiscus cannabinus L.[J]. Journal of South China Agricultural University, 2014, 35(6): 33-40. DOI: 10.7671/j.issn.1001-411X.2014.06.007
    [6]LI Chao, LIN Jianwei, ZENG Fandong, SHAO Lanjun, LI Fujun, ZHOU Lifei, FENG Juan, ZHANG Weixiang, CHEN Huayong, CHEN Jianjun, DENG Shiyuan, CAI Yixia, WANG Wei. Effects of different nutrient management models on the formation of yield, quality and nitrogen use efficiency of flue-cured tobacco[J]. Journal of South China Agricultural University, 2014, 35(5): 57-63. DOI: 10.7671/j.issn.1001-411X.2014.05.010
    [7]ZHU Sheng-lin,YANG Bo,ZHANG Ming-wu. Research on a Comprehensive Trust Management Model in Distributed Systems[J]. Journal of South China Agricultural University, 2007, 28(2): 113-115. DOI: 10.7671/j.issn.1001-411X.2007.02.029
    [8]ZHAO Xin~1,LUO Xi-wen~1,MA Shuo-shi~2,OU Ying-gang~1,HONG Tian-sheng~1. Application of Precision Farming Technology on Grassland Resource Management[J]. Journal of South China Agricultural University, 2003, 24(4): 71-74. DOI: 10.7671/j.issn.1001-411X.2003.04.020
    [9]Cai Kunzheng, Duan Shunshan, Chen Rongjun. Cluster Analysis of Soil Nutrient on Typical Hillsides in Guangdong[J]. Journal of South China Agricultural University, 1999, (4): 90-93.
    [10]Lu Weisheng 1\ Zhang Jianguo 2\ Liao Zhongwen 1\ Cai Zucong 3. EFFCTS OF DIFFERENT WATER MANAGEMENT AND CROPPING SYSTEM ON METHANE EMISSION FROM PADDY FIELDS IN GUANGZHOU REGION[J]. Journal of South China Agricultural University, 1997, (3): 57-61.
  • Cited by

    Periodical cited type(4)

    1. 刘闽卉,刘远微,欧立军. 赤霉素浸种对不同品种辣椒种子萌发及幼苗生长的影响. 种子. 2025(02): 29-35+68 .
    2. 董青松,胡营,韦筱媚,韦树根,张占江,朱艳霞. 肉桂种子质量分级标准研究. 种子. 2025(02): 223-229 .
    3. 黄众基,朱镕一,荆凤鸽,俞倩,赵光武. 不同水稻品种稻米品质性状与种子活力的相关性研究. 浙江农林大学学报. 2024(04): 679-687 .
    4. 谢华,李蜜蜜,陈媛,郭丹,李颖,雷鸣,杜辉辉. 钨胁迫对水稻种子萌发及幼苗建成的影响. 湖南生态科学学报. 2024(04): 21-29 .

    Other cited types(5)

Catalog

    Article views (746) PDF downloads (651) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return