Citation: | YAO Lixian, ZHOU Changmin, HE Zhaohuan, et al. Nutrient accumulation characteristics of main litchi cultivars and their relationships with soil nutrients[J]. Journal of South China Agricultural University, 2020, 41(2): 40-47. DOI: 10.7671/j.issn.1001-411X.201904032 |
To understand the parameters of nutrient requirement for fruit-bearing plants of the main cultivars of litchi (Litchi chinensis Sonn.) and the relation between litchi plant nutrient and soil fertility, and supply the basic data for nutrient management of litchi.
Ten plants from ten litchi main cultivars including ‘Feizixiao’, etc, with medium to high fruit yield and approximately 15 years of age, were excavated at fruit harvest in the main production areas of South China. The biological characteristics of these plants were examined. Moreover, leaf, fruit, trunk and root samples of ten cultivars were collected to investigate the nutrient accumulation and distribution in various parts of litchi plants. The relations between tissue nutrient contents in litchi plants and soil nutrients were calculated.
The aboveground biomass of these trees ranged from 158.2 to 344.9 kg. Fruit yield per tree varied from 38.4 to 101.8 kg and accounted for 18.0%−38.1% of total biomass of the aboveground part. Litchi leaf contained the highest nitrogen (N) content, while trunk had the maximum calcium (Ca) or N content. N or potassium (K) was detected with the upmost content in epicarp, endocarp, pulp and seed, whereas Ca commonly dominated in root. Molybdenum (Mo) was undetectable in various parts in some cultivars. Based on the yield of 50 kg fruit, N, P, K, Ca and magnesium (Mg) accumulation of litchi aboveground part was 811.9, 86.4, 586.0, 792.5 and 112.8 g respectively. And 114.5 g N, 14.4 g P, 105.1 g K, 21.6 g Ca and 12.5 g Mg were taken away with 50 kg fruit harvest, which amounted for 15.8%, 18.9%, 20.2%, 3.4% and 12.6% of total N, P, K, Ca and Mg nutrients accumulated in the aboveground part of litchi, respectively. Foliar K, Ca and Mg contents had a significantly positive correlation with soil available K, Ca and Mg contents respectively (P<0.05), whereas the other forliar nutrients were not closely related to soil nutrients.
The nutrient removal by fruit harvest and pruning is the lowest nutrient addition amount to maintain soil fertility and healthy plant growth for the next year. Soil available K, Ca and Mg contents can be used to predict K, Ca and Mg contents in litchi leaves. Application of Ca, Si and Mo in litchi is recommended to be further investigated.
[1] |
庄丽娟, 邱泽慧. 印度荔枝产业发展特征与趋势分析[J]. 中国热带农业, 2019(1): 22-25. doi: 10.3969/j.issn.1673-0658.2019.01.006
|
[2] |
雷刘功, 袁惠民. 中国农业年鉴[M]. 北京: 中国农业出版社, 2016.
|
[3] |
GROFF G W. Some ecological factors involved in successful lychee culture[J]. Proc Fla State Hortic Soc, 1943, 56: 134-155.
|
[4] |
CHAPMAN K R. Tropical fruit cultivar collecting in S. E. Asia and China[R]. Queensland: Queensland Department of Primary Industries, 1984.
|
[5] |
MENZEL C M, HAYDON G F, SIMPSON D R. Mineral nutrient reserves in bearing litchi trees (Litchi chinensis Sonn.)[J]. J Hortic Sci, 1992, 67(2): 149-160. doi: 10.1080/00221589.1992.11516232
|
[6] |
陈菁, 樊小林, 孙光明. 荔枝树体生物量的构成特点[J]. 果树学报, 2008, 25(6): 860-863.
|
[7] |
陈菁, 樊小林, 孙光明. 荔枝树体钾素分布及累积特点[J]. 华南农业大学学报, 2010, 31(2): 9-11. doi: 10.3969/j.issn.1001-411X.2010.02.003
|
[8] |
杨苞梅, 姚丽贤, 李国良, 等. 荔枝叶片养分含量动态及不同比例钾、氮肥施用效应[J]. 植物营养与肥料学报, 2014, 20(5): 1212-1220. doi: 10.11674/zwyf.2014.0518
|
[9] |
樊小林, 黄彩龙, JUHANI U, 等. 荔枝年生长周期内N、P、K营养动态规律与施肥管理体系[J]. 果树学报, 2004, 21(6): 548-551.
|
[10] |
邱燕萍, 李志强, 欧良喜, 等. 妃子笑荔枝不同花期果实发育特点及叶、果营养差异研究[J]. 广东农业科学, 2005, 32(1): 46-47. doi: 10.3969/j.issn.1004-874X.2005.01.016
|
[11] |
姚丽贤, 周昌敏, 何兆桓, 等. 荔枝年度枝梢和花果发育养分需求特性[J]. 植物营养与肥料学报, 2017, 23(4): 1128-1134. doi: 10.11674/zwyf.16303
|
[12] |
姚丽贤. 我国荔枝养分管理技术应用与需求调研报告[J]. 荔枝科技通讯, 2009(3): 41-54.
|
[13] |
陈厚彬, 齐文娥, 张荣, 等. 我国荔枝安全生产和产业经济调研报告[J]. 荔枝科技通讯, 2009(3): 57-76.
|
[14] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
[15] |
中国林业科学研究院林业研究所森林土壤研究室. 森林植物与森林枯枝落叶层全硅、铁、铝、钙、镁、钾、钠、磷、硫、锰、铜、锌的测定: LY/T 1270—1999[S]. 北京: 中国标准出版社, 1999.
|
[16] |
罗东林, 王伟, 朱陆伟, 等. 华南荔枝叶片营养诊断指标的建立[J]. 植物营养与肥料学报, 2019, 25(5): 859-870. doi: 10.11674/zwyf.18201
|
[17] |
MENZEL C M, SIMPSON D R. Lychee nutrition: A review[J]. Sci Hortic, 1987, 31(3/4): 195-224.
|
[18] |
全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998.
|
[19] |
姚丽贤, 周昌敏, 何兆桓, 等. 荔枝龙眼果实异常症状观察及矿质营养分析[J]. 中国南方果树, 2017, 46(4): 49-54.
|
[20] |
MA J F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses[J]. Soil Sci Plant Nut, 2004, 50(1): 11-18. doi: 10.1080/00380768.2004.10408447
|
[21] |
陈玉婷, 林威鹏, 范雪莹, 等. 硅接到番茄青枯病抗性的土壤定量蛋白质组学研究[J]. 土壤学报, 2015, 52(1): 162-173. doi: 10.11766/trxb201405200240
|
[22] |
MENDEL R R, BITTNER F. Cell biology of molybdenum[J]. Biochim Biophys Acta, 2006, 1763(7): 621-635. doi: 10.1016/j.bbamcr.2006.03.013
|
[23] |
JONGRUAYSUP S, DELL B, BELL R W. Distribution and redistribution of molybdenum in black gram (Vigna mungo L. Hepper) in relation to molybdenum supply[J]. Ann Bot, 1994, 73: 161-167. doi: 10.1006/anbo.1994.1019
|
[24] |
谢开云, 何峰, 李向林, 等. 我国紫花苜蓿主产田土壤养分和植物养分调查分析[J]. 草业学报, 2016, 25(3): 202-214. doi: 10.11686/cyxb2015206
|
[25] |
詹其厚, 陈杰. 基于长期定位试验的变性土养分持续供给能力和作物响应研究[J]. 土壤学报, 2006, 43(1): 124-132. doi: 10.3321/j.issn:0564-3929.2006.01.018
|
[26] |
孙钊, 高祥照. 果树测土配方施肥技术现状与建议[J]. 中国农业信息, 2009(11): 16-18. doi: 10.3969/j.issn.1672-0423.2009.11.006
|
[27] |
李国良, 姚丽贤, 张政勤, 等. 广东荔枝园土壤养分肥力时空变化研究[J]. 土壤通报, 2011, 42(5): 1081-1086.
|
[28] |
李国良, 张政勤, 姚丽贤, 等. 广西壮族自治区与福建省荔枝园土壤养分肥力现状研究[J]. 土壤通报, 2012, 43(4): 867-871.
|
[29] |
马检, 樊卫国. 不同配比的硝态氮和铵态氮对枇杷实生苗氮素吸收动力学及生长的影响[J]. 中国农业科学, 2016, 49(6): 1152-1162. doi: 10.3864/j.issn.0578-1752.2016.06.011
|
[30] |
唐艺璇, 郑洁敏, 楼莉萍, 等. 3种挺水植物吸收水体NH4+、NO3-、H2PO4-的动力学特征比较[J]. 中国生态农业学报, 2011, 19(3): 614-618.
|