Citation: | REN Minhua, ZHANG Jingyan, CUI Xiaodong, et al. Diversity of Ralstonia solanacearum strains from tomato in the south of Jiangxi Province[J]. Journal of South China Agricultural University, 2022, 43(1): 67-76. DOI: 10.7671/j.issn.1001-411X.202101041 |
Isolating and identifying Ralstonia solanacearum strains from tomato plants in the Southern of Jiangxi Province, and clarifying the bacterial differentiation can lay the foundation for local tomato bacterial wilt resistance breeding and disease control.
The diseased tomato plants were collected from the south of Jiangxi Province, R. solanacearum strains with different geographical origins were isolated by selective plate, purificated and identificated by PCR. The test of physiology and biochemistry and inoculation on tomato plants were conducted for the determination of biovar and virulence difference. The endoglucanase gene (egl) fragments were amplified by PCR to determine the phylotype and sequevar of R. solanacearum.
A total of 44 R. solanacearum strains were obtained from nine cities (counties) in the south of Jiangxi Province, among which 41 strains were identified as biovar III and three strains were identified as biovar IV. According to the results of virulence difference, 44 strains were clustered into three groups, namely group I (high virulence), group II (moderate virulence) and group III (weak virulence), of which group I (high virulence) strains accounted for 65.9%. All strains were belonged to the phylotype I and further divided into eight sequevars, namely Sequevar 13, 14, 15, 17, 18, 34, 44 and 48 respeclively. Most R. solanacearum strains were sensitive to the eight tested bacteriophages.
The strains of R. solanacearum from tomato in the south of Jiangxi Province are mainly biovar III and high virulence, sensitive to bacteriophages, have eight sequevars, and have obvious differentiation and genetic diversity.
[1] |
冯洁. 植物病原细菌分类最新进展[J]. 中国农业科学, 2017, 50(12): 2305-2314. doi: 10.3864/j.issn.0578-1752.2017.12.011
|
[2] |
HAYWARD A C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum[J]. Annual Review of Phytopathology, 1991, 29(1): 65-87. doi: 10.1146/annurev.py.29.090191.000433
|
[3] |
乔俊卿, 陈志谊, 刘邮洲, 等. 茄科作物青枯病研究进展[J]. 植物病理学报, 2013, 43(1): 1-10. doi: 10.3969/j.issn.0412-0914.2013.01.001
|
[4] |
王杰, 龙世芳, 王正文, 等. 番茄青枯病防治研究进展[J]. 中国蔬菜, 2020, 40(1): 22-30.
|
[5] |
HAYWARD A. Characteristics of Pseudomonas solanacearum[J]. Journal of Applied Bacteriology, 1964, 27(2): 265-277. doi: 10.1111/j.1365-2672.1964.tb04912.x
|
[6] |
华静月, 张长龄, 何礼远. 我国植物青枯菌的生化型和其他生理差异[J]. 植物保护学报, 1984, 11(1): 43-50.
|
[7] |
PRIOR P, FEGAN M. Recent development in the phylogeny and classification of Ralstonia solanacearum[J]. Acta Horticulturae, 2005, 695(14): 127-136.
|
[8] |
徐进, 冯洁. 植物青枯菌遗传多样性及致病基因组学研究进展[J]. 中国农业科学, 2013, 46(14): 2902-2909. doi: 10.3864/j.issn.0578-1752.2013.14.006
|
[9] |
JIANG G, WEI Z, XU J, et al. Bacterial wilt in China: History, current status, and future perspectives[J/OL]. Frontiers in Plant Science, 2017, 8: 1549. [2021-01-18]. https://doi.org/10.3389/fpls.2017.01549.
|
[10] |
ADDY H S, ASKORA A, KAWASAKI T, et al. Loss of virulence of the phytopathogen Ralstonia solanacearum through infection by φRSM filamentous phages[J]. Phytopathology, 2012, 102(5): 469-477. doi: 10.1094/PHYTO-11-11-0319-R
|
[11] |
ADDY H S, ASKORA A, KAWASAKI T, et al. The filamentous phage фRSS1 enhances virulence of phytopathogenic Ralstonia solanacearum on tomato[J]. Phytopathology, 2012, 102(3): 244-251. doi: 10.1094/PHYTO-10-11-0277
|
[12] |
LIU N, LEWIS C, ZHENG W, et al. Phage cocktail therapy: Multiple ways to suppress pathogenicity[J]. Trends in Plant Science, 2020, 25(4): 315-317. doi: 10.1016/j.tplants.2020.01.013
|
[13] |
佘小漫, 何自福. 作物青枯病研究进展[J]. 广东农业科学, 2020, 47(12): 82-89.
|
[14] |
汪国平, 林明宝, 吴定华. 番茄青枯病抗性遗传研究进展[J]. 园艺学报, 2004, 31(3): 403-407. doi: 10.3321/j.issn:0513-353X.2004.03.033
|
[15] |
陈胜华. 番茄青枯病生物防治策略研究[J]. 农业与技术, 2018, 38(6): 24.
|
[16] |
何自福, 虞皓, 罗方芳. 广东茄科青枯菌致病力分化及其DNA多态性分析[J]. 植物病理学报, 2003, 33(5): 415-420. doi: 10.3321/j.issn:0412-0914.2003.05.007
|
[17] |
WICKER E, GRASSART L, CORANSON-BEAUDU R, et al. Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential[J]. Applied & Environmental Microbiology, 2007, 73(21): 6790-6801.
|
[18] |
PEREZ A S, MEJIA L, FEGAN M, et al. Diversity and distribution of Ralstonia solanacearum strains in Guatemala and rare occurrence of tomato fruit infection[J]. Plant Pathology, 2010, 57(2): 320-331.
|
[19] |
NORMAN D J, ZAPATA M, GABRIEL D W, et al. Genetic diversity and host range variation of Ralstonia solanacearum strains entering North America[J]. Phytopathology, 2009, 99(9): 1070-1077. doi: 10.1094/PHYTO-99-9-1070
|
[20] |
POUSSIER S, VANDEWALLE P, LUISETTI J. Genetic diversity of African and worldwide strains of Ralstonia solanacearum as determined by PCR-restriction fragment length polymorphism analysis of the hrp gene region[J]. Applied and Environmental Microbiology, 1999, 65(5): 2184-2194. doi: 10.1128/AEM.65.5.2184-2194.1999
|
[21] |
CHESNEAU T, MAIGNIEN G, BOYER C, et al. Sequevar diversity and virulence of Ralstonia solanacearum phylotype Ⅰ on Mayotte Island (Indian Ocean)[J]. Frontiers in Plant Science, 2017, 8: 2209. Doi: 10.3389/fpls.2017.02209.
|
[22] |
JI P, ALLEN C, SANCHEZ-PEREZ A, et al. New diversity of Ralstonia solanacearum strains associated with vegetable and ornamental crops in Florida[J]. Plant Disease, 2007, 91(2): 195-203. doi: 10.1094/PDIS-91-2-0195
|
[23] |
MAHBOU SOMO TOUKAN G, CELLIER G, WICKER E, et al. Broad diversity of Ralstonia solanacearum strains in Cameroon[J]. Plant Disease, 2009, 93(11): 1123-1130. doi: 10.1094/PDIS-93-11-1123
|
[24] |
XUE Q Y, YIN Y N, YANG W, et al. Genetic diversity of Ralstonia solanacearum strains from China assessed by PCR-based fingerprints to unravel host plant-and site-dependent distribution patterns[J]. FEMS Microbiology Ecology, 2011, 75(3): 507-519. doi: 10.1111/j.1574-6941.2010.01026.x
|
[25] |
SHE X M, HE Z F, LI H P. Genetic structure and phylogenetic relationships of Ralstonia solanacearum strains from diverse origins in Guangdong Povince, China[J]. Journal of Phytopathology, 2017, 166(3): 177-186.
|
[26] |
曾宪铭, 董春. 广东农作物青枯病菌的生化型[J]. 华南农业大学学报, 1995, 16(1): 50-53.
|
[27] |
郑向华, 杨帆, 邓海滨, 等. 我国植物青枯菌的生物型及RAPD分析[C]. //中国植物病理学会. 中国植物病理学会2008年学术年会论文集. 广州: 中国农业科学技术出版社, 2008: 329-337.
|
[28] |
XU J, PAN Z C, PRIOR P, et al. Genetic diversity of Ralstonia solanacearum strains from China[J]. European Journal of Plant Pathology, 2009, 125(4): 641-653. doi: 10.1007/s10658-009-9512-5
|
[29] |
马超, 丛聪, 王丽丽, 等. 噬菌体控制植物细菌性疾病的研究进展[J]. 中国抗生素杂志, 2017, 42(9): 749-754. doi: 10.3969/j.issn.1001-8689.2017.09.006
|
[30] |
DI LALLO G, EVANGELISTI M, MANCUSO F, et al. Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker[J]. Journal of Basic Microbiology, 2015, 54(11): 1210-1221.
|
[31] |
WEI C H, LIU J L, MAINA A, et al. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt[J]. Virologica Sinica, 2017, 32(6): 476-484. doi: 10.1007/s12250-017-3987-6
|
[32] |
WANG X F, WEI Z, YANG K M, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019, 37(12): 1513-1520. doi: 10.1038/s41587-019-0328-3
|
[1] | YAO Lixian, ZHOU Changmin, HE Zhaohuan, LI Guoliang, YANG Baomei, BAI Cuihua. Nutrient accumulation characteristics of main litchi cultivars and their relationships with soil nutrients[J]. Journal of South China Agricultural University, 2020, 41(2): 40-47. DOI: 10.7671/j.issn.1001-411X.201904032 |
[2] | DONG Linsong, WU Zhenfang, CAI Gengyuan, ZHENG Enqin. Design and implement strategies for batch management in pig farms[J]. Journal of South China Agricultural University, 2019, 40(S1): 162-166. |
[3] | ZHANG Xinming, CHENG Gen, XU Pengju, CAO Xianwei. Effects of straw mulching on nutrient release and nutrient balance in potato soil[J]. Journal of South China Agricultural University, 2019, 40(6): 59-66. DOI: 10.7671/j.issn.1001-411X.201811010 |
[4] | ZHANG Yajie, QIAN Huihui, LIU Kunping, SU Yirong, LI Fusheng. Effect of fertilization on soil active organic carbon and carbon pool management index under maize/soybean intercropping condition[J]. Journal of South China Agricultural University, 2016, 37(3): 29-36. DOI: 10.7671/j.issn.1001-411X.2016.03.005 |
[5] | WANG Daobo, LI Fusheng, ZHOU Ruiyang. Effects of NPK fertilizer management on nutrient use of kenaf,Hibiscus cannabinus L.[J]. Journal of South China Agricultural University, 2014, 35(6): 33-40. DOI: 10.7671/j.issn.1001-411X.2014.06.007 |
[6] | LI Chao, LIN Jianwei, ZENG Fandong, SHAO Lanjun, LI Fujun, ZHOU Lifei, FENG Juan, ZHANG Weixiang, CHEN Huayong, CHEN Jianjun, DENG Shiyuan, CAI Yixia, WANG Wei. Effects of different nutrient management models on the formation of yield, quality and nitrogen use efficiency of flue-cured tobacco[J]. Journal of South China Agricultural University, 2014, 35(5): 57-63. DOI: 10.7671/j.issn.1001-411X.2014.05.010 |
[7] | ZHU Sheng-lin,YANG Bo,ZHANG Ming-wu. Research on a Comprehensive Trust Management Model in Distributed Systems[J]. Journal of South China Agricultural University, 2007, 28(2): 113-115. DOI: 10.7671/j.issn.1001-411X.2007.02.029 |
[8] | ZHAO Xin~1,LUO Xi-wen~1,MA Shuo-shi~2,OU Ying-gang~1,HONG Tian-sheng~1. Application of Precision Farming Technology on Grassland Resource Management[J]. Journal of South China Agricultural University, 2003, 24(4): 71-74. DOI: 10.7671/j.issn.1001-411X.2003.04.020 |
[9] | Cai Kunzheng, Duan Shunshan, Chen Rongjun. Cluster Analysis of Soil Nutrient on Typical Hillsides in Guangdong[J]. Journal of South China Agricultural University, 1999, (4): 90-93. |
[10] | Lu Weisheng 1\ Zhang Jianguo 2\ Liao Zhongwen 1\ Cai Zucong 3. EFFCTS OF DIFFERENT WATER MANAGEMENT AND CROPPING SYSTEM ON METHANE EMISSION FROM PADDY FIELDS IN GUANGZHOU REGION[J]. Journal of South China Agricultural University, 1997, (3): 57-61. |