• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
YANG Weifeng, ZHAN Penglin, LIN Shaojun, et al. Research progress of grain shape genetics in rice[J]. Journal of South China Agricultural University, 2019, 40(5): 203-210. DOI: 10.7671/j.issn.1001-411X.201905081
Citation: YANG Weifeng, ZHAN Penglin, LIN Shaojun, et al. Research progress of grain shape genetics in rice[J]. Journal of South China Agricultural University, 2019, 40(5): 203-210. DOI: 10.7671/j.issn.1001-411X.201905081

Research progress of grain shape genetics in rice

More Information
  • Received Date: May 27, 2019
  • Available Online: May 17, 2023
  • Grain shape controls rice yield. Meanwhile, grain shape is related to rice appearance quality, and an important element determing rice quality. With the developments of modern genetics and genomics related theories and technologies, the genetic researches on grain shape are gradually deepened. Now dozens of QTLs controlling grain shape are cloned. This review summarizes the main progresses of genetic researches on grain shape, points out the major problems and analyzes the prospects.

  • [1]
    ZUO J, LI J. Molecular dissection of complex agronomic traits of rice: A team effort by Chinese scientists in recent years[J]. Natl Sci Rev, 2014, 1(2): 253-276. doi: 10.1093/nsr/nwt004
    [2]
    袁隆平. 种业竞争时代的科技创新:超级杂交水稻育种研究新进展[J]. 中国农村科技, 2010(2): 22-25. doi: 10.3969/j.issn.1005-9768.2010.02.006
    [3]
    FITZGERALD M A, MCCOUCH S R, HALL R D. Not just a grain of rice: The quest for quality[J]. Trends Plant Sci, 2009, 14(3): 133-139. doi: 10.1016/j.tplants.2008.12.004
    [4]
    周开达, 李宏伟. 优质是杂交稻发展的必由之路[J]. 杂交水稻, 1994(z1): 42-45.
    [5]
    肖国樱, 陈芬, 孟秋成, 等. 论湖南水稻育种的主攻方向和技术策略[J]. 杂交水稻, 2015, 30(4): 1-5.
    [6]
    HRBERD N P. Shaping taste: The molecular discovery of rice genes improving grain size, shape and quality[J]. J Genet Genomics, 2015, 42(11): 597-599. doi: 10.1016/j.jgg.2015.09.008
    [7]
    XING Y, ZHANG Q. Genetic and molecular bases of rice yield[J]. Annu Rev Plant Biol, 2010, 61(1): 421-442. doi: 10.1146/annurev-arplant-042809-112209
    [8]
    SONG X J, ASHIKARI M. Toward an optimum return from crop plants[J]. Rice, 2008, 1(2): 135-143. doi: 10.1007/s12284-008-9018-3
    [9]
    杨联松, 白一松, 张培江, 等. 谷粒形状与稻米品质相关性研究[J]. 杂交水稻, 2001(4): 51-53. doi: 10.3969/j.issn.1005-3956.2001.04.024
    [10]
    HUANG R, JIANG L, ZHENG J, et al. Genetic bases of rice grain shape: So many genes, so little known[J]. Trends Plant Sci, 2013, 18(4): 218-226. doi: 10.1016/j.tplants.2012.11.001
    [11]
    黎毛毛, 徐磊, 刘昌文, 等. 水稻粒形遗传及QTLs定位研究进展[J]. 中国农业科技导报, 2008, 10(1): 34-42. doi: 10.3969/j.issn.1008-0864.2008.01.007
    [12]
    CALINGACION M, LABORTE A, NELSON A, et al. Diversity of global rice markets and the science required for consumer-targeted rice breeding[J]. PLoS One, 2014, 9(1): e85106. doi: 10.1371/journal.pone.0085106.
    [13]
    ZHAO D S, LI Q F, ZHANG C Q, et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nat Commun, 2018, 9(1). doi: 10.1038/s41467-018-03616-y.
    [14]
    莫惠栋. 种子性状及其遗传效应的鉴别[J]. 扬州大学学报(农业与生命科学版), 1990, 11(2): 11-15.
    [15]
    林鸿宣, 闵绍楷, 熊振民, 等. 应用RFLP图谱定位分析籼稻粒形数量性状基因座位[J]. 中国农业科学, 1995, 28(4): 1-7. doi: 10.3321/j.issn:0578-1752.1995.04.008
    [16]
    周清元, 安华, 张毅, 等. 水稻子粒形态性状遗传研究[J]. 西南农业大学学报, 2000(2): 102-104. doi: 10.3969/j.issn.1673-9868.2000.02.002
    [17]
    谭友斌. 利用高世代回交群体分析水稻粒型QTLs[D]. 武汉: 华中农业大学, 2006.
    [18]
    TAN Y F, LI J Y S, XU C G, et al. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid[J]. Theor Appl Genet, 2000, 101(6): 823-829.
    [19]
    苪重庆, 赵安常. 籼稻粒重及粒形性状F1遗传特性的双列分析[J]. 中国农业科学, 1983, 16(5): 14-20.
    [20]
    石春海, 申宗坦. 籼稻粒形及产量性状的加性相关和显性相关分析[J]. 作物学报, 1996, 22(1): 36-42. doi: 10.3321/j.issn:0496-3490.1996.01.006
    [21]
    姚国新, 卢磊. 水稻粒重基因定位克隆研究[J]. 安徽农业科学, 2007, 35(27): 8468. doi: 10.3969/j.issn.0517-6611.2007.27.023
    [22]
    莫惠栋. 我国稻米品质的改良[J]. 扬州大学学报(农业与生命科学版), 1994, 15(1): 8-14.
    [23]
    李欣, 莫惠栋, 王安民, 等. 粳型杂种稻米品质性状的遗传表达[J]. 中国水稻科学, 1999, 13(4): 197-204.
    [24]
    万向元, 陈亮明, 王海莲, 等. 水稻品种胚乳淀粉RVA谱的稳定性分析[J]. 作物学报, 2004(12): 1185-1191. doi: 10.3321/j.issn:0496-3490.2004.12.002
    [25]
    熊振民, 孔繁林. 大粒型水稻品种的遗传动态及其选育[J]. 浙江农业科学, 1976(2): 26-29.
    [26]
    MCKENZIE K S, RUTGER J N. Genetic analysis of amylose content, alkali spreading score, and grain dimensions in rice[J]. Crop Sci, 1983, 23(2): 306-313. doi: 10.2135/cropsci1983.0011183X002300020031x
    [27]
    JUN C L, NUTIK S L. Surgical approaches to intraventricular meningiomas of the trigone[J]. Neurosurgery, 1985, 16(3): 416-420. doi: 10.1227/00006123-198503000-00025
    [28]
    林荔辉, 吴为人. 水稻粒型和粒重的QTL定位分析[J]. 分子植物育种, 2003(3): 337-342. doi: 10.3969/j.issn.1672-416X.2003.03.007
    [29]
    石春海, 申宗坦. 早籼粒形的遗传和改良[J]. 中国水稻科学, 1995(1): 27-32. doi: 10.3321/j.issn:1001-7216.1995.01.006
    [30]
    杨联松, 白一松, 陈多璞, 等. 粳稻粒形遗传初步研究[J]. 杂交水稻, 2002, 17(6): 46-48. doi: 10.3969/j.issn.1005-3956.2002.06.021
    [31]
    邱先进, 袁志华, 何文静, 等. 水稻垩白性状遗传育种研究进展[J]. 植物遗传资源学报, 2014(5): 992-998.
    [32]
    彭波, 孙艳芳, 李琪瑞, 等. 水稻垩白性状的遗传研究进展[J]. 信阳师范学院学报(自然科学版), 2016, 29(2): 304-312. doi: 10.3969/j.issn.1003-0972.2016.02.035
    [33]
    国家市场监督管理总局中国国家标准化管理委员会. 大米: GB/T—2018[S]. 北京: 中国标准出版社, 2018:1-10.
    [34]
    徐正进, 陈温福, 马殿荣, 等. 稻谷粒形与稻米主要品质性状的关系[J]. 作物学报, 2004(9): 894-900. doi: 10.3321/j.issn:0496-3490.2004.09.009
    [35]
    李泽福, 夏加发, 刘礼明, 等. 籼粳交重组自交系群体主要稻米品质性状分析[J]. 安徽农业科学, 2004, 32(6): 1112-1115. doi: 10.3969/j.issn.0517-6611.2004.06.003
    [36]
    石春海, 朱军. 水稻植株农艺性状与稻米碾磨品质的遗传相关性分析[J]. 浙江农业大学学报, 1997(3): 105-111.
    [37]
    杨联松, 白一松, 许传万, 等. 水稻粒形与稻米品质间相关性研究进展[J]. 安徽农业科学, 2001(3): 312-316. doi: 10.3969/j.issn.0517-6611.2001.03.018
    [38]
    LI Y, FAN C, XING Y, et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nat Genet, 2014, 46(4): 398-404. doi: 10.1038/ng.2923
    [39]
    李仕贵, 黎汉云, 周开达, 等. 杂交水稻稻米外观品质性状的遗传相关分析[J]. 西南农业大学学报, 1995, 17(3): 197-201.
    [40]
    石春海. 水稻粒形与优质米育种[J]. 中国农学通报, 1994(1): 41-45.
    [41]
    ZUO J, LI J. Molecular genetic dissection of quantitative trait loci regulating rice grain size[J]. Annu Rev Genet, 2014, 48: 99-118. doi: 10.1146/annurev-genet-120213-092138
    [42]
    ZHAO H, SUN L, XIONG T, et al. Genetic characterization of the chromosome single-segment substitution lines of O. glumaepatula and O. barthii and identification of QTLs for yield-related traits[J]. Mol Breeding, 2019, 39(4). doi: 10.1007/s11032-019-0960-0.
    [43]
    BHATIA D, WING R A, YU Y, et al. Genotyping by sequencing of rice interspecific backcross inbred lines identifies QTLs for grain weight and grain length[J]. Euphytica, 2018, 214(2). doi: 10.1007/s10681-018-2119-1.
    [44]
    HE N, WU R, PAN X, et al. Development and trait evaluation of chromosome single-segment substitution lines of O. meridionalis in the background of O. sativa[J]. Euphytica, 2017, 213(12). doi: 10.1007/s10681-017-2072-4.
    [45]
    QI L, SUN Y, LI J, et al. Identify QTLs for grain size and weight in common wild rice using chromosome segment substitution lines across six environments[J]. Breeding Sci, 2017, 67(5): 472-482. doi: 10.1270/jsbbs.16082
    [46]
    GAO F, ZENG L, QIU L, et al. QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice (Oryza sativa L.)[J]. J Integr Agr, 2016, 15(8): 1693-1702. doi: 10.1016/S2095-3119(15)61259-X
    [47]
    LIU D, KANG M, WANG F, et al. Mapping of the genetic determinant for grain size in rice using a recombinant inbred line (RIL) population generated from two elite indica parents[J]. Euphytica, 2015, 206(1): 159-173. doi: 10.1007/s10681-015-1493-1
    [48]
    刘丹, 王嘉宇, 柴永山, 等. 利用籼粳交RILs群体的水稻粒形QTLs定位[J]. 沈阳农业大学学报, 2015, 46(4): 385-390. doi: 10.3969/j.issn.1008-9713.2015.04.001
    [49]
    孙滨, 占小登, 林泽川, 等. 水稻粒形和粒重性状的相关性分析及QTL定位[J]. 分子植物育种, 2015, 13(12): 2663-2672.
    [50]
    YAN B, LIU R, LI Y, et al. QTL analysis on rice grain appearance quality, as exemplifying the typical events of transgenic or backcrossing breeding[J]. Breeding Sci, 2014, 64(3): 231-239. doi: 10.1270/jsbbs.64.231
    [51]
    ZHANG H, WANG H, QIAN Y, et al. Simultaneous improvement and genetic dissection of grain yield and its related traits in a backbone parent of hybrid rice (Oryza sativa L.) using selective introgression[J]. Mol Breeding, 2013, 31(1): 181-194. doi: 10.1007/s11032-012-9782-z
    [52]
    SINGH R, SINGH A K, SHARMA T R, et al. Fine mapping of grain length QTLs on chromosomes 1 and 7 in Basmati rice (Oryza sativa L.)[J]. J Plant Biochem Biot, 2012, 21(2): 157-166. doi: 10.1007/s13562-011-0080-3
    [53]
    梅德勇, 朱玉君, 樊叶杨. 籼稻稻米碾磨与外观品质性状的QTL定位[J]. 遗传, 2012(12): 1591-1598.
    [54]
    LIANG Y, ZHAN X, GAO Z, et al. Mapping of QTLs associated with important agronomic traits using three populations derived from a super hybrid rice Xieyou9308[J]. Euphytica, 2012, 184(1): 1-13. doi: 10.1007/s10681-011-0456-4
    [55]
    MARATHI B. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.)[J]. BMC Plant Biol, 2012, 12(1): 137. doi: 10.1186/1471-2229-12-137
    [56]
    张强, 姚国新, 胡广隆, 等. 利用极端材料定位水稻粒形性状数量基因位点[J]. 作物学报, 2011, 37(5): 784-792.
    [57]
    姚国新, 李金杰, 张强, 等. 利用4个姊妹近等基因系群体定位水稻粒重和粒形QTL[J]. 作物学报, 2010, 36(8): 1310-1317.
    [58]
    AMARAWATHI Y, SINGH R, SINGH A K, et al. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.)[J]. Mol Breeding, 2008, 21(1): 49-65.
    [59]
    陈冰嬬, 石英尧, 崔金腾, 等. 利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL[J]. 作物学报, 2008(8): 1299-1307.
    [60]
    赵明富, 黄招德, 吴春珠, 等. 水稻谷粒粒长显性主效QTL的遗传分析与定位[J]. 分子植物育种, 2008(6): 1057-1060. doi: 10.3969/j.issn.1672-416X.2008.06.005
    [61]
    YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo[J]. Theor Appl Genet, 2006, 112(6): 1052-1062. doi: 10.1007/s00122-006-0207-4
    [62]
    ZHOU L Q, WANG Y P, LI S G. Genetic analysis and physical mapping of Lk-4(t), a major gene controlling grain length in rice, with a BC2F2 population[J]. Acta Genetica Sinica, 2006, 33(1): 72-79. doi: 10.1016/S0379-4172(06)60011-5
    [63]
    WAN X Y, WAN J M, WENG J F, et al. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments[J]. Theor Appl Genet, 2005, 110(7): 1334-1346. doi: 10.1007/s00122-005-1976-x
    [64]
    MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genet, 2005, 6. doi: 10.1186/1471-2156-6-33.
    [65]
    ALUKO G, MARTINEZ C, TOHME J, et al. QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima[J]. Theor Appl Genet, 2004, 109(3): 630-639. doi: 10.1007/s00122-004-1668-y
    [66]
    RABIEI B, VALIZADEH M, GHAREYAZIE B, et al. Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers[J]. Euphytica, 2004, 137(3): 325-332. doi: 10.1023/B:EUPH.0000040452.76276.76
    [67]
    LI Z F, WAN J M, XIA J F, et al. Mapping quantitative trait loci underlying appearance quality of rice grains (Oryza sativa L.)[J]. Acta Genetica Sinica, 2003, 30(3): 251-259.
    [68]
    YAN C J, LIANG G H, FENG C, et al. Mapping quantitative trait loci associated with rice grain shape based on an indica/japonica backcross population[J]. Acta Genetica Sinica, 2003, 30(8): 711-716.
    [69]
    汪斌, 兰涛, 吴为人. 应用微卫星图谱定位稻米性状的QTL[J]. 福建农业学报, 2003(1): 11-15. doi: 10.3969/j.issn.1008-0384.2003.01.003
    [70]
    YOSHIDA S, IKEGAMI M, KUZE J, et al. QTL analysis for plant and grain characters of sake-brewing rice using a doubled haploid population[J]. Breeding Sci, 2002, 52(4): 309-317. doi: 10.1270/jsbbs.52.309
    [71]
    吴长明, 孙传清, 陈亮, 等. 应用RFLP图谱定位分析稻米粒形的QTL[J]. 吉林农业科学, 2002, 27(5): 3-7. doi: 10.3969/j.issn.1003-8701.2002.05.001
    [72]
    徐建龙, 薛庆中, 罗利军, 等. 水稻粒重及其相关性状的遗传解析[J]. 中国水稻科学, 2002(1): 7-11.
    [73]
    BRONDANI C, RANGEL P, BRONDANI R, et al. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa L.) using microsatellite markers[J]. Theor Appl Genet, 2002, 104(6): 1192-1203. doi: 10.1007/s00122-002-0869-5
    [74]
    邢永忠, 谈移芳, 徐才国, 等. 利用水稻重组自交系群体定位谷粒外观性状的数量性状基因[J]. 植物学报, 2001, 43(8): 840-845. doi: 10.3321/j.issn:1672-9072.2001.08.012
    [75]
    MONCADA P, MARTÍNEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa×Oryza rufipogon BC2F2 population evaluated in an upland environment[J]. Theor Appl Genet, 2001, 102(1): 41-52. doi: 10.1007/s001220051616
    [76]
    LI J X, YU S B, XU C G, et al. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid[J]. Theor Appl Genet, 2000, 101(1/2): 248-254.
    [77]
    REDOÑA E D, MACKILL D J. Quantitative trait locus analysis for rice panicle and grain characteristics[J]. Theor Appl Genet, 1998, 96(6/7): 957-963.
    [78]
    HUANG N, PARCO A, MEW T, et al. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population[J]. Mol Breeding, 1997, 3(2): 105-113. doi: 10.1023/A:1009683603862
    [79]
    LI Z K, PINSON S R M, PARK W D, et al. Epistasis for three grain yield components in rice (Oryza Sativa L.)[J]. Genetics, 1997, 145(2): 453-465.
    [80]
    尉鑫, 曾智锋, 杨维丰, 等. 水稻粒形遗传调控研究进展[J]. 安徽农业科学, 2019, 47(5): 21-28. doi: 10.3969/j.issn.0517-6611.2019.05.006
    [81]
    SONG X, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nat Genet, 2007, 39(5): 623-630. doi: 10.1038/ng2014
    [82]
    CHE R, TONG H, SHI B, et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nat Plants, 2015, 2(1). doi: 10.1038/NPLANTS.2015.195.
    [83]
    DUAN P, NI S, WANG J, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nat Plants, 2016, 2(1). doi: 10.1038/NPLANTS.2015.203.
    [84]
    FAN C, XING Y, MAO H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor Appl Genet, 2006, 112(6): 1164-1171. doi: 10.1007/s00122-006-0218-1
    [85]
    QI P, LIN Y S, SONG X J, et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Res, 2012, 22(12): 1666-1680. doi: 10.1038/cr.2012.151
    [86]
    ZHANG X, WANG J, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proc Natl Acad Sci USA, 2012, 109(52): 21534-21539. doi: 10.1073/pnas.1219776110
    [87]
    LIU Q, HAN R, WU K, et al. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nat Commun, 2018, 9(1). doi: 10.1038/s41467-018-03047-9.
    [88]
    SHOMURA A, IZAWA T K, EBITANI T, et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nat Genet, 2008, 40(8): 1023-1028. doi: 10.1038/ng.169
    [89]
    LIU J, CHEN J, ZHENG X, et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nat Plants, 2017, 3(5). doi: 10.1038/nplants.2017.43.
    [90]
    LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011, 43(12): 1266-1269. doi: 10.1038/ng.977
    [91]
    SUN L, LI X, FU Y, et al. GS6, a member of the GRAS gene family, negatively regulates grain size in rice[J]. J Integr Plant Biol, 2013, 55(10): 938-949.
    [92]
    ISHIMARU K, HIROTSU N, MADOKA Y, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nat Genet, 2013, 45(6): 707-713. doi: 10.1038/ng.2612
    [93]
    SONG X J, KUROHA T, AYANO M, et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice[J]. Proc Natl Acad Sci USA, 2015, 112(1): 76-81. doi: 10.1073/pnas.1421127112
    [94]
    WANG Y, XIONG G, HU J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nat Genet, 2015, 47(8): 944-948. doi: 10.1038/ng.3346
    [95]
    WANG S, LI S, LIU Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nat Genet, 2015, 47(8): 949-954. doi: 10.1038/ng.3352
    [96]
    SI L, CHEN J, HUANG X, et al. OsSPL13 controls grain size in cultivated rice[J]. Nat Genet, 2016, 48(4): 447-456. doi: 10.1038/ng.3518
    [97]
    WANG S, WU K, YUAM Q, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012, 44(8): 950-954. doi: 10.1038/ng.2327
    [98]
    LI N, XU R, LI Y. Molecular networks of seed size control in plants[J]. Annu Rev Plant Biol, 2019, 70: 435-463. doi: 10.1146/annurev-arplant-050718-095851
    [99]
    JIAO Y, WANG Y D, WANG J, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nat Genet, 2010, 42(6): 541-544. doi: 10.1038/ng.591
    [100]
    MATSUOKA M, ASHIKARI M. A quantitative trait locus regulating rice grain width[J]. Nat Genet, 2007, 39(5): 583-584. doi: 10.1038/ng0507-583
    [101]
    SHI C, REN Y, LIU L, et al. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice[J]. Plant Physiol, 2019, 180(1): 381-391. doi: 10.1104/pp.19.00065
    [102]
    WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008, 18(12): 1199-1209. doi: 10.1038/cr.2008.307
    [103]
    SUN S, WANG L, MAO H, et al. A G-protein pathway determines grain size in rice[J]. Nat Commun, 2018, 9. doi: 10.1038/s41467-018-03141-y.
    [104]
    ASHIKARI M, SAKAKIBARA H, Lin S Y, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745. doi: 10.1126/science.1113373
    [105]
    XU C, LIU Y, LI Y, et al. Differential expression of GS5 regulates grain size in rice[J]. J Exp Bot, 2015, 66(9): 2611-2623. doi: 10.1093/jxb/erv058
    [106]
    SAKAMOTO T, MATSUOKA M. Identifying and exploiting grain yield genes in rice[J]. Curr Opin Plant Biol, 2008, 11(2): 209-214. doi: 10.1016/j.pbi.2008.01.009
    [107]
    MIURA K, MATSUOKA M. Rice genetics: Control of grain length and quality[J]. Nat Plants, 2015, 1(8). doi: 10.1038/NPLANTS.2015.112.
    [108]
    万建民. 作物分子设计育种[J]. 作物学报, 2006, 32(3): 455-462. doi: 10.3321/j.issn:0496-3490.2006.03.023
    [109]
    QIAN Q, GUO L, SMITH S M, et al. Breeding high-yield superior quality hybrid super rice by rational design[J]. Natl Sci Rev, 2016, 3(3): 283-294. doi: 10.1093/nsr/nww006
    [110]
    HU J, WANG Y, FANG Y, et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Mol Plant, 2015, 8(10): 1455-1465. doi: 10.1016/j.molp.2015.07.002
    [111]
    GONG J, MIAO J, ZHAO Y, et al. Dissecting the genetic basis of grain shape and chalkiness traits in hybrid rice using multiple collaborative populations[J]. Mol Plant, 2017, 10(10): 1353-1356. doi: 10.1016/j.molp.2017.07.014
    [112]
    GAO X, ZhANG X, LAN H, et al. The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons[J]. BMC Plant Biol, 2015, 15. doi: 10.1186/s12870-015-0515-4.
    [113]
    ZENG D, TIAN Z, RAO Y, et al. Rational design of high-yield and superior-quality rice[J]. Nat Plants, 2017, 3(4). doi: 10.1038/nplants.2017.31.
    [114]
    黄海祥, 钱前. 水稻粒形遗传与长粒型优质粳稻育种进展[J]. 中国水稻科学, 2017, 31(6): 665-672.
    [115]
    杨梯丰, 曾瑞珍, 朱海涛, 等. 水稻粒长基因GS3在聚合育种中的效应[J]. 分子植物育种, 2010, 8(1): 59-66.
    [116]
    DAI Z, LU Q, LUAN X, et al. Development of a platform for breeding by design of CMS lines based on an SSSL library in rice (Oryza sativa L.)[J]. Euphytica, 2015, 205(1): 63-72. doi: 10.1007/s10681-015-1384-5

Catalog

    Article views (2160) PDF downloads (2369) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return