Citation: | CUI Guangjuan, CAO Huayuan, CHEN Kang, et al. Effects of cadmium stress on plant growth and element distribution of four soybean genotypes[J]. Journal of South China Agricultural University, 2020, 41(5): 49-57. DOI: 10.7671/j.issn.1001-411X.201911023 |
To analyze cadmium (Cd) sensitivity differences of different soybean genotypes, and screen Cd-tolerant genotypes for soybean breeding.
Different Cd concentrations were set, four soybean genotypes of ‘Baxi No. 10’, ‘Bendi No. 2’, ‘Guixiadou No. 2’ and ‘Huaxia No. 3’ were selected as test materials. The taproot length, biomass, total root length, root surface area, Cd concentration and nutrient element concentrations were determined.
Under 11 mg/kg Cd treatment, the taproot length of ‘Huaxia No. 3’ did not obviously change compared with the control while the taproot growths of other three soybean genotypes were distinctly inhibited. The taproot growths of four soybean genotypes were severely inhibited when Cd concentrations were higher than 46 mg/kg. Cd treatment reduced soybean biomass. ‘Baxi No. 10’ and ‘Bendi No. 2’ were more severely Cd-toxic. ‘Guixiadou No. 2’ and ‘Huaxia No. 3’ showed significantly higher biomasses than ‘Baxi No. 10’ and ‘Bendi No. 2’ under 10 and 20 mg/kg Cd stress treatments. The Cd concentrations in roots of four soybean genotypes were far higher than those in shoots. In 10 mg/kg Cd treatment, Cd concentration in the shoot of ‘Bendi No. 2’ was significantly higher than those in shoots of ‘Guixiadou No. 2’ and ‘Huaxia No. 3’, indicating that Cd-resistant ‘Guixiadou No. 2’ and ‘Huaxia No. 3’transfered less Cd from root to shoot. The root growths of four soybean genotypes were significantly inhibited by Cd stress. The total root length and root surface area of ‘Huaxia No. 3’ were less inhibited compared with other three soybean genotypes. There were significant differences among nutrient element concentrations of four soybean genotypes treated by different Cd concentrations.
There are significant genotypic differences of Cd tolerances among four soybean genotypes. ‘Baxi No. 10’ and ‘Bendi No. 2’ are Cd-sensitive genotypes while ‘Guixiadou No. 2’ and ‘Huaxia No. 3’ are Cd-tolerant genotypes. The differences of Cd tolerance may relate to root growth and element distribution in soybean under Cd treatments.
[1] |
LI H, LUO N, LI Y W, et al. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures[J]. Environ Pollut, 2017, 224: 622-630. doi: 10.1016/j.envpol.2017.01.087
|
[2] |
FINZGAR N, LESTAN D. The two-phase leaching of Pb, Zn and Cd contaminated soil using EDTA and electrochemical treatment of the washing solution[J]. Chemosphere, 2008, 73(9): 1484-1491. doi: 10.1016/j.chemosphere.2008.07.043
|
[3] |
REHMAN M Z U, RIZWAN M, ALI S, et al. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review[J]. Ecotox Environ Safe, 2017, 143: 236-248. doi: 10.1016/j.ecoenv.2017.05.038
|
[4] |
VAN ASSCHE F , CLIJSTERS H. Effect of metals on enzyme activity in plants[J]. Plant Cell Environ, 1990, 13(3): 195-206. doi: 10.1111/j.1365-3040.1990.tb01304.x
|
[5] |
TALANOVA V V, TITOV A F, BOEVA N P. Effect of increasing concentrations of heavy metals on the growth of barley and wheat seedlings[J]. Russ J Plant Phys, 2001, 48(1): 100-103. doi: 10.1023/A:1009062901460
|
[6] |
丁海东, 朱为民, 杨少军, 等. 镉、锌胁迫对番茄幼苗生长及脯氨酸和谷胱甘肽含量的影响[J]. 江苏农业学报, 2005, 21(3): 191-196. doi: 10.3969/j.issn.1000-4440.2005.03.010
|
[7] |
EDERLI L, REALE L, FERRANTI F, et al. Responses induced by high concentration of cadmium in Phragmites australis roots[J]. Physiol Plantarum, 2004, 121(1): 66-74. doi: 10.1111/j.0031-9317.2004.00295.x
|
[8] |
周全, 王宏, 张迎信, 等. 不同镉浓度处理下水稻植株镉含量变化及其镉调控相关基因表达分析[J]. 中国水稻科学, 2016, 30(4): 380-388.
|
[9] |
GZYL J, CHMIELOWSKA-BĄK J, PRZYMUSIŃSKI R, et al. Cadmium affects microtubule organization and post-translational modifications of tubulin in seedlings of soybean (Glycine max L.)[J]. Front Plant Sci, 2015, 6(511): 449-455.
|
[10] |
HE J Y, ZHU C, REN Y F, et al. Root morphology and cadmium uptake kinetics of the cadmium-sensitive rice mutant[J]. Biol Plantarum, 2007, 51(4): 791-794. doi: 10.1007/s10535-007-0162-1
|
[11] |
KÜPPER H, KOCHIAN L V. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population)[J]. New Phytol, 2010, 185(1): 114-129. doi: 10.1111/j.1469-8137.2009.03051.x
|
[12] |
孙建云, 沈振国. 镉胁迫对不同甘蓝基因型光合特性和养分吸收的影响[J]. 应用生态学报, 2007, 18(11): 2605-2610.
|
[13] |
CUI G, AI S, CHEN K, et al. Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression[J]. Ecotox Environ Safe, 2019, 171: 231-239.
|
[14] |
ZHOU H, ZENG M, ZHOU X, et al. Assessment of heavy metal contamination and bioaccumulation in soybean plants from mining and smelting areas of southern Hunan Province, China[J]. Ecotox Environ Safe, 2013, 32(12): 2719-2727.
|
[15] |
XUE Z, GAO H, ZHAO S. Effects of cadmium on the photosynthetic activity in mature and young leaves of soybean plants[J]. Environ Sci Pollut R, 2014, 21(6): 4656-4664. doi: 10.1007/s11356-013-2433-z
|
[16] |
ZHANG S, ZHOU J, WANG G, et al. The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean[J]. Appl Microbiol Biot, 2015, 99(23): 10225-10235. doi: 10.1007/s00253-015-6913-6
|
[17] |
潘高, 张合平, 刘鹏, 等. 锰胁迫对苍耳种子萌发及幼苗生理生化特性的影响[J]. 草业学报, 2017, 26(11): 157-166. doi: 10.11686/cyxb2017033
|
[18] |
杜兰芳, 沈宗根, 王立新, 等. CdCl2对豌豆种子萌发和幼苗生长的影响[J]. 西北植物学报, 2007, 27(7): 1411-1416. doi: 10.3321/j.issn:1000-4025.2007.07.021
|
[19] |
李冬, 王艳芳, 王悦华, 等. 外源褪黑素对镉胁迫下豌豆种子萌发、幼苗抗性生理及镉含量的影响[J]. 核农学报, 2019, 33(11): 2271-2279. doi: 10.11869/j.issn.100-8551.2019.11.2271
|
[20] |
王志坤, 廖柏寒, 黄运湘, 等. 镉胁迫对大豆幼苗生长影响及不同品种耐镉差异性研究[J]. 农业环境科学学报, 2006, 25(5): 1143-1147. doi: 10.3321/j.issn:1672-2043.2006.05.010
|
[21] |
丁氏清茶. 甜高粱在重金属镉胁迫下的生理反应和基因鉴定[D]. 重庆: 西南大学, 2016.
|
[22] |
赵云云, 钟彩霞, 方小龙, 等. 华南地区11个春播大豆品种抗镉性的差异[J]. 华南农业大学学报, 2014, 35(3): 111-113. doi: 10.7671/j.issn.1001-411X.2014.03.020
|
[23] |
WANG P, DENG X, HUANG Y, et al. Comparison of subcellular distribution and chemical forms of cadmium among four soybean cultivars at young seedlings[J]. Environ Sci Pollut R, 2015, 22(24): 19584-19595. doi: 10.1007/s11356-015-5126-y
|
[24] |
DI TOPPI L S, GABBRIELLI R. Response to cadmium in higher plants[J]. Environ Exp Bot, 1999, 41(2): 105-130. doi: 10.1016/S0098-8472(98)00058-6
|
[25] |
何俊瑜, 任艳芳, 王阳阳, 等. 不同耐性水稻幼苗根系对镉胁迫的形态及生理响应[J]. 生态学报, 2011, 31(2): 522-528.
|
[26] |
DONG J, WU F, ZHANG G. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum)[J]. Chemosphere, 2006, 64(10): 1659-1666.
|
[27] |
李沛然, 龚颖婷, 黄丽颖, 等. 大豆镉累积及吸收转运特性研究[J]. 广东农业科学, 2016, 43(5): 82-86. doi: 10.3969/j.issn.1004-874X.2016.05.016
|
[28] |
王崇臣, 王鹏, 黄忠臣. 盆栽玉米和大豆对铅、镉的富集作用研究[J]. 安徽农业科学, 2008, 36(24): 10383-10386. doi: 10.3969/j.issn.0517-6611.2008.24.044
|
[29] |
NOCITO F F, LANCILLI C, DENDENA B, et al. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation[J]. Plant Cell Environ, 2011, 34(6): 994-1008. doi: 10.1111/j.1365-3040.2011.02299.x
|
[30] |
张芬琴. 镉胁迫对二种不同耐性豆科植物生长与活性氧代谢的影响及水杨酸对镉毒害的缓解效应[D]. 南京: 南京农业大学, 2009.
|
[31] |
黄运湘, 廖柏寒, 王志坤. 镉胁迫对大豆生长及籽粒中营养元素含量的影响[J]. 安全与环境学报, 2008, 8(2): 11-15. doi: 10.3969/j.issn.1009-6094.2008.02.004
|
[32] |
MONTEIRO M S, SANTOS C, SOARES A M V M, et al. Assessment of biomarkers of cadmium stress in lettuce[J]. Ecotox Environ Safe, 2009, 72(3): 811-818.
|
[33] |
刘媛, 马文超, 张雯, 等. 镉胁迫对秋华柳根系活力及其Ca、Mg、Mn、Zn、Fe积累的影响[J]. 应用生态学报, 2016, 27(4): 1109-1115.
|
[34] |
黄运湘, 王志坤, 袁红, 等. 大豆对镉胁迫的生理反应及耐镉机理探讨[J]. 农业环境科学学报, 2011, 30(8): 1514-1520.
|
[35] |
顾秀聪, 王超, 张松贺. Cd对大白菜生长、叶绿素含量及体内矿物营养元素的影响[EB/OL]. 北京: 中国科技论文在线. [2011-02-14]. http://www.paper.edu.cn/releasepaper/content/201102-118.
|