FU Han, WU Zhizhi, DUAN Jieli, et al. Calibration of contact parameters of ‘Luli’ apple for simulation based on discrete element[J]. Journal of South China Agricultural University, 2025, 46(3): 407-418. DOI: 10.7671/j.issn.1001-411X.202403013
    Citation: FU Han, WU Zhizhi, DUAN Jieli, et al. Calibration of contact parameters of ‘Luli’ apple for simulation based on discrete element[J]. Journal of South China Agricultural University, 2025, 46(3): 407-418. DOI: 10.7671/j.issn.1001-411X.202403013

    Calibration of contact parameters of ‘Luli’ apple for simulation based on discrete element

    More Information
    • Received Date: March 09, 2024
    • Available Online: January 08, 2025
    • Published Date: January 12, 2025
    • Objective 

      The aim of this study was to construct a discrete element model of apples and precisely calibrate the corresponding contact parameters.

      Method 

      The discrete element model of ‘Luli’ apples was constructed using a spherical particle bonding method, and the optimal particle radius was identified through comparative analysis. A combined method of experimental testing and simulation was adopted to determine the contact parameters, such as the restitution coefficient and friction coefficients. Analysis of variance (ANOVA) was employed to evaluate the effects of collision zone, fruit mass, and foam type on the contact parameters. Various test conditions were simulated to obtain data, which were then used to fit parameter equations. The parameter equations were subsequently verified.

      Result 

      The collision zone had no significant effect on the coefficient of restitution. A discrete element model with a 2 mm particle radius was established. The calibrated restitution coefficients, static and rolling friction coefficients between the apple particle models and the super-high and high-density foams were 0.61 and 0.47, 0.46 and 0.61, 0.0166 and 0.0288, respectively. The corresponding values for interactions between apple particle models were 0.65, 0.42 and 0.032 0 respectively. The effectiveness of the calibrated parameters was verified through a bottomless cylinder lifting experiment.

      Conclusion 

      The discrete element model of apple is successfully constructed. This study can provide a theoretical basis for the design and optimization of close-range catching mechanisms in apple vibration harvesting or post-harvest processing devices.

    • [1]
      ZHANG Z, IGATHINATHANE C, LI J, et al. Technology progress in mechanical harvest of fresh market apples[J]. Computers and Electronics in Agriculture, 2020, 175: 105606 doi: 10.1016/j.compag.2020.105606
      [2]
      文恩杨, 李玉华, 牛子孺, 等. 蒜种颗粒离散元模型参数标定[J]. 农机化研究, 2021, 43(5): 160-167. doi: 10.3969/j.issn.1003-188X.2021.05.028
      [3]
      SCHEFFLER O C, COETZEE C J, OPARA U L, et al. A discrete element model (DEM) for predicting apple damage during handling[J]. Biosystems Engineering, 2018, 172: 29-48. doi: 10.1016/j.biosystemseng.2018.05.015
      [4]
      ZHAO H, HUANG Y, LIU Z, et al. Applications of discrete element method in the research of agricultural machinery: A review[J]. Agriculture, 2021, 11(5): 425. doi: 10.3390/agriculture11050425
      [5]
      徐泳, 李艳洁, 李红艳, 等. 离散元法在农业机械化中应用评述[J]. 农机化研究, 2004(5): 26-30. doi: 10.3969/j.issn.1003-188X.2004.05.008
      [6]
      KAFASHAN J, WIACEK J, RAMON H, et al. Modelling and simulation of fruit drop tests by discrete element method[J]. Biosystems Engineering, 2021, 212: 228-240. doi: 10.1016/j.biosystemseng.2021.08.007
      [7]
      侯占峰, 戴念祖, 陈智, 等. 冰草种子物性参数测定与离散元仿真参数标定[J]. 农业工程学报, 2020, 36(24): 46-54. doi: 10.11975/j.issn.1002-6819.2020.24.006
      [8]
      FANG W, WANG X, HAN D, et al. Review of material parameter calibration method[J]. Agriculture, 2022, 12(5): 706. doi: 10.3390/agriculture12050706
      [9]
      张国忠, 陈立明, 刘浩蓬, 等. 荸荠离散元仿真参数标定与试验[J]. 农业工程学报, 2022, 38(11): 41-50. doi: 10.11975/j.issn.1002-6819.2022.11.005
      [10]
      牛智有, 孔宪锐, 沈柏胜, 等. 颗粒饲料破损离散元仿真参数标定[J]. 农业机械学报, 2022, 53(7): 132-140. doi: 10.6041/j.issn.1000-1298.2022.07.013
      [11]
      王宪良, 胡红, 王庆杰, 等. 基于离散元的土壤模型参数标定方法[J]. 农业机械学报, 2017, 48(12): 78-85. doi: 10.6041/j.issn.1000-1298.2017.12.009
      [12]
      贾富国, 韩燕龙, 刘扬, 等. 稻谷颗粒物料堆积角模拟预测方法[J]. 农业工程学报, 2014, 30(11): 254-260. doi: 10.3969/j.issn.1002-6819.2014.11.031
      [13]
      王云霞, 梁志杰, 张东兴, 等. 基于离散元的玉米种子颗粒模型种间接触参数标定[J]. 农业工程学报, 2016, 32(22): 36-42. doi: 10.11975/j.issn.1002-6819.2016.22.005
      [14]
      YAN D, YU J, WANG Y, et al. A review of the application of discrete element method in agricultural engineering: A case study of soybean[J]. Processes, 2022, 10(7): 1305. doi: 10.3390/pr10071305
      [15]
      任甲辉, 武涛, 刘庆庭, 等. 蔗段离散元仿真建模方法与参数标定[J]. 华南农业大学学报, 2022, 43(3): 124-132. doi: 10.7671/j.issn.1001-411X.202108015
      [16]
      LI C, LI Z, WANG T, et al. Parameter optimization of column-comb harvesting of litchi based on the EDEM[J]. Scientia Horticulturae, 2023, 321: 112216. doi: 10.1016/j.scienta.2023.112216
      [17]
      FAN G, WANG S, SHI W, et al. Simulation parameter calibration and test of typical pear varieties based on discrete element method[J]. Agronomy, 2022, 12(7): 1720. doi: 10.3390/agronomy12071720
      [18]
      马云海. 农业物料学[M]. 北京: 化学工业出版社, 2015.
      [19]
      FU H, YANG J, DU W, et al. Determination of coefficient of restitution of fresh market apples caused by fruit-to-fruit collisions with a sliding method[J]. Biosystems Engineering, 2022, 224: 183-196. doi: 10.1016/j.biosystemseng.2022.10.010
      [20]
      哈尔滨工业大学理论力学教研室. 理论力学 II[M]. 北京: 高等教育出版社, 2016.
      [21]
      FU H, HE L, MA S, et al. ‘Jazz’ apple impact bruise responses to different cushioning materials[J]. Transactions of the ASABE, 2017, 60(2): 327-336. doi: 10.13031/trans.11946
      [22]
      刘文政, 何进, 李洪文, 等. 基于离散元的微型马铃薯仿真参数标定[J]. 农业机械学报, 2018, 49(5): 125-135. doi: 10.6041/j.issn.1000-1298.2018.05.014
      [23]
      PANG W, STUDMAN C J, WARD G T. Bruising damage in apple-to-apple impact[J]. Journal of Agricultural Engineering Research, 1992, 52: 229-240. doi: 10.1016/0021-8634(92)80063-X
      [24]
      吴孟宸, 丛锦玲, 闫琴, 等. 花生种子颗粒离散元仿真参数标定与试验[J]. 农业工程学报, 2020, 36(23): 30-38. doi: 10.11975/j.issn.1002-6819.2020.23.004
      [25]
      李勤良. 颗粒堆积性质和散状物料转载过程的DEM仿真研究[D]. 沈阳: 东北大学, 2010.
    • Cited by

      Periodical cited type(21)

      1. 贺青,张静月,顾臻,汪建谊,赵文荣. 基于改进蚁群算法的变电站巡检机器人路径规划. 机械设计与研究. 2025(01): 282-287+292 .
      2. 孙柱,吕宪勇,孙凯信,李佩霏,齐琪琪. 基于Dubins曲线的轮式机旋耕作业CCPP算法. 农业装备与车辆工程. 2024(05): 9-13 .
      3. 孟浩德,吴征天,吴闻笛,施坤. 基于记忆模拟退火算法的扫地机器人遍历路径规划. 计算机与数字工程. 2024(03): 821-826+857 .
      4. 李文峰,徐蕾,杨琳琳,刘文荣,潘坤,李超. 基于改进蚁群算法的农业机器人多田块路径规划方法与试验. 南京农业大学学报. 2024(04): 823-834 .
      5. 王新彦,盛冠杰,张凯,易政洋. 基于改进A~*算法和DFS算法的割草机器人遍历路径规划. 中国农机化学报. 2023(02): 142-147 .
      6. 潘富强,曾成,马国红,刘继忠. 一种融合改进A*算法与改进动态窗口法的AGV路径规划. 传感技术学报. 2023(01): 68-77 .
      7. 沈跃,刘子涵,刘慧,杜伟. 基于多约束条件的果园喷雾机器人路径规划方法. 农业机械学报. 2023(07): 56-67 .
      8. 董雅文,杨静雯,刘文慧,张宝锋. 基于改进A~*算法的机器人全覆盖衔接路径规划. 传感器与微系统. 2023(09): 125-128 .
      9. 贺平,张德晖,侯志涛,洪夏明,李盼春,虞洋. 智能割草机路径规划研究现状. 福建农机. 2023(03): 36-40 .
      10. 周龙港,刘婷,卢劲竹. 基于Floyd和改进遗传算法的丘陵地区农田遍历路径规划. 智慧农业(中英文). 2023(04): 45-57 .
      11. 姜光,姜久超,李爱宁,李岩,常硕. 基于PLC的农业机器人电气控制系统设计. 农机化研究. 2022(02): 219-223 .
      12. 田茹,曹茂永,马凤英,纪鹏. 基于改进A*算法的农用无人机路径规划. 现代电子技术. 2022(04): 182-186 .
      13. 龙洋,苏义鑫,廉城,张丹红. 混合细菌觅食算法求解无人艇路径规划问题. 华中科技大学学报(自然科学版). 2022(03): 68-73 .
      14. 陈凯,解印山,李彦明,刘成良,莫锦秋. 多约束情形下的农机全覆盖路径规划方法. 农业机械学报. 2022(05): 17-26+43 .
      15. 王宁,韩雨晓,王雅萱,王天海,张漫,李寒. 农业机器人全覆盖作业规划研究进展. 农业机械学报. 2022(S1): 1-19 .
      16. 刘胜,张豪,晏齐忠,张志鑫,申永鹏. 基于ACO-SA算法的变电站巡检机器人路径规划. 南方电网技术. 2022(09): 75-82 .
      17. 宫金良,王伟,张彦斐,兰玉彬. 基于农田环境的农业机器人群协同作业策略. 农业工程学报. 2021(02): 11-19 .
      18. 黄月琴,罗兵,邓辅秦,李伟科,杨勇. 智能扫地机器人的全覆盖路径规划. 五邑大学学报(自然科学版). 2021(02): 51-58 .
      19. 董雅文,杨静雯,刘文慧,张宝锋. 基于BSO-GA算法的机器人子区域覆盖路径规划. 轻工机械. 2021(06): 57-64 .
      20. 武义,欧明敏,段立伟. 基于改进A~*算法和动态窗口法的机器人路径规划研究. 工业控制计算机. 2020(10): 67-70 .
      21. 刘洋成,耿端阳,兰玉彬,谭德蕾,牟孝栋,孙延成. 基于自动导航的农业装备全覆盖路径规划研究进展. 中国农机化学报. 2020(11): 185-192 .

      Other cited types(22)

    Catalog

      Article views (75) PDF downloads (56) Cited by(43)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return