Citation: | FU Han, WU Zhizhi, DUAN Jieli, et al. Calibration of contact parameters of ‘Luli’ apple for simulation based on discrete element[J]. Journal of South China Agricultural University, 2025, 46(3): 407-418. DOI: 10.7671/j.issn.1001-411X.202403013 |
The aim of this study was to construct a discrete element model of apples and precisely calibrate the corresponding contact parameters.
The discrete element model of ‘Luli’ apples was constructed using a spherical particle bonding method, and the optimal particle radius was identified through comparative analysis. A combined method of experimental testing and simulation was adopted to determine the contact parameters, such as the restitution coefficient and friction coefficients. Analysis of variance (ANOVA) was employed to evaluate the effects of collision zone, fruit mass, and foam type on the contact parameters. Various test conditions were simulated to obtain data, which were then used to fit parameter equations. The parameter equations were subsequently verified.
The collision zone had no significant effect on the coefficient of restitution. A discrete element model with a 2 mm particle radius was established. The calibrated restitution coefficients, static and rolling friction coefficients between the apple particle models and the super-high and high-density foams were 0.61 and 0.47, 0.46 and 0.61,
The discrete element model of apple is successfully constructed. This study can provide a theoretical basis for the design and optimization of close-range catching mechanisms in apple vibration harvesting or post-harvest processing devices.
[1] |
ZHANG Z, IGATHINATHANE C, LI J, et al. Technology progress in mechanical harvest of fresh market apples[J]. Computers and Electronics in Agriculture, 2020, 175: 105606 doi: 10.1016/j.compag.2020.105606
|
[2] |
文恩杨, 李玉华, 牛子孺, 等. 蒜种颗粒离散元模型参数标定[J]. 农机化研究, 2021, 43(5): 160-167. doi: 10.3969/j.issn.1003-188X.2021.05.028
|
[3] |
SCHEFFLER O C, COETZEE C J, OPARA U L, et al. A discrete element model (DEM) for predicting apple damage during handling[J]. Biosystems Engineering, 2018, 172: 29-48. doi: 10.1016/j.biosystemseng.2018.05.015
|
[4] |
ZHAO H, HUANG Y, LIU Z, et al. Applications of discrete element method in the research of agricultural machinery: A review[J]. Agriculture, 2021, 11(5): 425. doi: 10.3390/agriculture11050425
|
[5] |
徐泳, 李艳洁, 李红艳, 等. 离散元法在农业机械化中应用评述[J]. 农机化研究, 2004(5): 26-30. doi: 10.3969/j.issn.1003-188X.2004.05.008
|
[6] |
KAFASHAN J, WIACEK J, RAMON H, et al. Modelling and simulation of fruit drop tests by discrete element method[J]. Biosystems Engineering, 2021, 212: 228-240. doi: 10.1016/j.biosystemseng.2021.08.007
|
[7] |
侯占峰, 戴念祖, 陈智, 等. 冰草种子物性参数测定与离散元仿真参数标定[J]. 农业工程学报, 2020, 36(24): 46-54. doi: 10.11975/j.issn.1002-6819.2020.24.006
|
[8] |
FANG W, WANG X, HAN D, et al. Review of material parameter calibration method[J]. Agriculture, 2022, 12(5): 706. doi: 10.3390/agriculture12050706
|
[9] |
张国忠, 陈立明, 刘浩蓬, 等. 荸荠离散元仿真参数标定与试验[J]. 农业工程学报, 2022, 38(11): 41-50. doi: 10.11975/j.issn.1002-6819.2022.11.005
|
[10] |
牛智有, 孔宪锐, 沈柏胜, 等. 颗粒饲料破损离散元仿真参数标定[J]. 农业机械学报, 2022, 53(7): 132-140. doi: 10.6041/j.issn.1000-1298.2022.07.013
|
[11] |
王宪良, 胡红, 王庆杰, 等. 基于离散元的土壤模型参数标定方法[J]. 农业机械学报, 2017, 48(12): 78-85. doi: 10.6041/j.issn.1000-1298.2017.12.009
|
[12] |
贾富国, 韩燕龙, 刘扬, 等. 稻谷颗粒物料堆积角模拟预测方法[J]. 农业工程学报, 2014, 30(11): 254-260. doi: 10.3969/j.issn.1002-6819.2014.11.031
|
[13] |
王云霞, 梁志杰, 张东兴, 等. 基于离散元的玉米种子颗粒模型种间接触参数标定[J]. 农业工程学报, 2016, 32(22): 36-42. doi: 10.11975/j.issn.1002-6819.2016.22.005
|
[14] |
YAN D, YU J, WANG Y, et al. A review of the application of discrete element method in agricultural engineering: A case study of soybean[J]. Processes, 2022, 10(7): 1305. doi: 10.3390/pr10071305
|
[15] |
任甲辉, 武涛, 刘庆庭, 等. 蔗段离散元仿真建模方法与参数标定[J]. 华南农业大学学报, 2022, 43(3): 124-132. doi: 10.7671/j.issn.1001-411X.202108015
|
[16] |
LI C, LI Z, WANG T, et al. Parameter optimization of column-comb harvesting of litchi based on the EDEM[J]. Scientia Horticulturae, 2023, 321: 112216. doi: 10.1016/j.scienta.2023.112216
|
[17] |
FAN G, WANG S, SHI W, et al. Simulation parameter calibration and test of typical pear varieties based on discrete element method[J]. Agronomy, 2022, 12(7): 1720. doi: 10.3390/agronomy12071720
|
[18] |
马云海. 农业物料学[M]. 北京: 化学工业出版社, 2015.
|
[19] |
FU H, YANG J, DU W, et al. Determination of coefficient of restitution of fresh market apples caused by fruit-to-fruit collisions with a sliding method[J]. Biosystems Engineering, 2022, 224: 183-196. doi: 10.1016/j.biosystemseng.2022.10.010
|
[20] |
哈尔滨工业大学理论力学教研室. 理论力学 II[M]. 北京: 高等教育出版社, 2016.
|
[21] |
FU H, HE L, MA S, et al. ‘Jazz’ apple impact bruise responses to different cushioning materials[J]. Transactions of the ASABE, 2017, 60(2): 327-336. doi: 10.13031/trans.11946
|
[22] |
刘文政, 何进, 李洪文, 等. 基于离散元的微型马铃薯仿真参数标定[J]. 农业机械学报, 2018, 49(5): 125-135. doi: 10.6041/j.issn.1000-1298.2018.05.014
|
[23] |
PANG W, STUDMAN C J, WARD G T. Bruising damage in apple-to-apple impact[J]. Journal of Agricultural Engineering Research, 1992, 52: 229-240. doi: 10.1016/0021-8634(92)80063-X
|
[24] |
吴孟宸, 丛锦玲, 闫琴, 等. 花生种子颗粒离散元仿真参数标定与试验[J]. 农业工程学报, 2020, 36(23): 30-38. doi: 10.11975/j.issn.1002-6819.2020.23.004
|
[25] |
李勤良. 颗粒堆积性质和散状物料转载过程的DEM仿真研究[D]. 沈阳: 东北大学, 2010.
|
1. |
丁晓,宋雨,习平根,李敏慧,姜子德,孔广辉. 荔枝褐斑病病原鉴定及生防菌筛选. 华南农业大学学报. 2025(02): 186-193 .
![]() |