Citation: | LI Youjia, YANG Fan, LÜ Baoqian, et al. Analysis of haplotype diversity of an invasive leaf-eating pest Opisina arenosella[J]. Journal of South China Agricultural University, 2020, 41(4): 76-81. DOI: 10.7671/j.issn.1001-411X.201910023 |
Opisina arenosella is an important invasive leaf-eating pest that attack Palmae plants. The goal was to analyze the distribution characteristics of haplotypes of O. arenosella in native and invaded zones, and reveal the insect source information of O. arenosella invading China.
A total of 172 samples from 16 geographical populations were analyzed by mitochondrial COI gene, and the genetic relationship of O. arenosella from India and invading areas (China, Malaysia and Thailand) was compared.
Twelve haplotypes were identified in 172 sequences with fragment length of 625 bp. Fifteen variation sites were detected in the haplotype alignment. Two obvious haplotype branches were formed, one of which was composed of 11 haplotypes IN1-IN11 and they were all from Indian populations. Haplotype IN1 was shared by six O. arenosella populations from India. IN2-IN11 were exclusive haplotypes and not shared with other populations. The other branch was haplotype HAP and shared by populations from China, Malaysia and Thailand. There were four variation sites between HAP and 11 haplotypes IN1-IN11 from India.
O. arenosella populations in these invading areas are from the same genotype type or have the same invasion source. O. arenosella invading populations produce new mutations or hybrids in new habitats under environmental selection pressure.
[1] |
PIMENTEL D, LACH L, ZUNIGA R, et al. Environmental and economic costs of nonindigenous species in the United States[J]. Bio Sci, 2000, 50(1): 53-66.
|
[2] |
PERERA P, HASSELL M, GODFRAY H. Population dynamics of the coconut caterpillar, Opisina arenosella Walker (Lepidoptera: Xyloryctidae), in Sri Lanka[J]. Bull Entomol Res, 1988, 78(3): 479-492. doi: 10.1017/S0007485300013237
|
[3] |
MOHAO C, NAIR C R, NAMPOOTHIRI C K, et al. Leaf-eating caterpillar (Opisina arenosella)-induced yield loss in coconut palm[J]. Int J Trop Insect Sci, 2010, 30(3): 132-137. doi: 10.1017/S174275841000024X
|
[4] |
吕宝乾, 严珍, 金启安, 等. 警惕椰子织蛾Opisina arenosella Walker(鳞翅目: 织蛾科)传入中国[J]. 生物安全学报, 2013, 22(1): 17-22. doi: 10.3969/j.issn.2095-1787.2013.01.003
|
[5] |
阎伟, 吕宝乾, 李洪, 等. 椰子织蛾传入中国及其海南省的风险性分析[J]. 生物安全学报, 2013, 22(3): 163-168. doi: 10.3969/j.issn.2095-1787.2013.03.003
|
[6] |
阎伟, 刘丽, 李朝绪, 等. 入侵害虫椰子织蛾对海南椰子造成的经济损失评估[J]. 中国南方果树, 2015, 44(4): 156-159.
|
[7] |
刘向蕊, 吕宝乾, 金启安, 等. 新入侵害虫椰子织蛾飞行能力测定[J]. 热带作物学报, 2014, 35(8): 1610-1614. doi: 10.3969/j.issn.1000-2561.2014.08.027
|
[8] |
刘向蕊, 吕宝乾, 金启安, 等. 5种杀虫剂对入侵害虫椰子织蛾的室内毒力测定[J]. 生物安全学报, 2014, 23(1): 13-17. doi: 10.3969/j.issn.2095-1787.2014.01.003
|
[9] |
黄山春, 李朝绪, 阎伟, 等. 海南发现椰子织蛾的重要天敌褐带卷蛾茧蜂[J]. 生物安全学报, 2017, 26(3): 256-258. doi: 10.3969/j.issn.2095-1787.2017.03.013
|
[10] |
孙晓东, 阎伟, 李朝绪, 等. 苏云金芽胞杆菌的鉴定及对椰子织蛾的致死作用[J]. 生物安全学报, 2016, 25(1): 49-53. doi: 10.3969/j.issn.2095-1787.2016.01.011
|
[11] |
陆永跃, 王敏. 椰子织蛾的形态特征识别[J]. 环境昆虫学报, 2013, 35(6): 838-842.
|
[12] |
金涛, 李应梅, 林玉英, 等. 椰子木蛾的产卵节律及其对寄主植物的产卵选择性[J]. 生物安全学报, 2016, 25(1): 39-43. doi: 10.3969/j.issn.2095-1787.2016.01.009
|
[13] |
YANG F, KAWABATA E, TUFAIL M, et al. r/K‐like trade‐off and voltinism discreteness: The implication to allochronic speciation in the fall webworm, Hyphantria cunea complex (Arctiidae)[J]. Ecol Evol, 2017, 7(24): 10592-10603. doi: 10.1002/ece3.3334
|
[14] |
CHEN F, LUO Y, KEENA M A, et al. DNA barcoding of gypsy moths from China (Lepidoptera: Erebidae) reveals new haplotypes and divergence patterns within gypsy moth subspecies[J]. J Econ Entom, 2015, 109(1): 366-374.
|
[15] |
张亚楠, 龚治, 牛黎明, 等. 基于COI基因片段的瓜实蝇遗传多样性分析[J]. 热带作物学报, 2017, 38(5): 926-931. doi: 10.3969/j.issn.1000-2561.2017.05.023
|
[16] |
DU Y Z, TANG X T, WANG L P, et al. Genetic differentiation of geographical populations of Liriomyzasativae (Diptera: Agromyzidae) in China based on mitochondrial COI gene sequences[J]. Mitochond DNA, 2016, 27(6): 3936-3940. doi: 10.3109/19401736.2014.987271
|
[17] |
LAVRINIENKO A, KESäNIEMI J, WATTS P C, et al. First record of the invasive pest Drosophila suzukii in Ukraine indicates multiple sources of invasion[J]. J Pest Sci, 2017, 90(2): 421-429. doi: 10.1007/s10340-016-0810-3
|
[18] |
NADEL R L, SLIPPERS B, SCHOLES M C, et al. DNA bar-coding reveals source and patterns of Thaumastocoris peregrinus invasions in South Africa and South America[J]. Biol Inv, 2010, 12(5): 1067-1077. doi: 10.1007/s10530-009-9524-2
|
[19] |
印红, 刘晓丽, 王彦芳, 等. 一种改进的昆虫基因组DNA的提取方法[J]. 河北大学学报(自然科学版), 2002, 22(1): 80-83.
|
[20] |
张德华, 周开亚, 孙红英. 乙醇保存的动物标本基因组DNA提取方法的比较[J]. 生物杂志, 2004, 21(6): 46-48.
|
[21] |
HALL T. A user-friendly biological sequence alignment editor and analysis program for Windows TM[J]. Bioed Vers, 1999, 7(41): 95-98.
|
[22] |
CLEMENT M, POSADA D, CRANDALL K A. TCS: A computer program to estimate gene genealogies[J]. Mol Ecol, 2000, 9(10): 1657-1659. doi: 10.1046/j.1365-294x.2000.01020.x
|
[23] |
ZHOU Z, HUANG Y, SHI F. The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length[J]. Genome, 2007, 50(9): 855-866. doi: 10.1139/G07-057
|
[24] |
施雯, 耿宇鹏, 欧晓昆. 遗传多样性与外来物种的成功入侵: 现状和展望[J]. 生物多样性, 2010, 18(6): 590-597.
|
[25] |
AUSTERLITZ F, JUNG-MULLER B, GODELLE B, et al. Evolution of coalescence times, genetic diversity and structure during colonization[J]. Theor Popul Biol, 1997, 51(2): 148-164. doi: 10.1006/tpbi.1997.1302
|
[26] |
DLUGOSCH K M, PARKER I. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions[J]. Mol Ecol, 2008, 17(1): 431-449. doi: 10.1111/j.1365-294X.2007.03538.x
|
[27] |
TSUTSUI N D, SUAREZ A V, HOLWAY D A, et al. Reduced genetic variation and the success of an invasive species[J]. Proc Nat Acad Sci USA, 2000, 97(11): 5948-5953. doi: 10.1073/pnas.100110397
|
[28] |
VAN HEERWAARDEN B, WILLI Y, KRISTENSEN T N, et al. Population bottlenecks increase additive genetic variance but do not break a selection limit in rain forest drosophila[J]. Genetics, 2008, 179(4): 2135-2146. doi: 10.1534/genetics.107.082768
|
[29] |
WILLI Y, VAN BUSKIRK J, HOFFMANN A A. Limits to the adaptive potential of small populations[J]. Annu Rev Ecol Evol Syst, 2006, 37: 433-458.
|
[30] |
STAPLEY J, SANTURE A W, DENNIS S R. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species[J]. Mol Ecol, 2015, 24(9): 2241-2252. doi: 10.1111/mec.13089
|
[31] |
NIU X M, XU Y C, LI Z W, et al. Transposable elements drive rapid phenotypic variation in Capsella rubella[J]. Proc Nat Acad Sci USA, 2019, 116(14): 6908-6913. doi: 10.1073/pnas.1811498116
|
[32] |
SUN J T, DUAN X Z, HOFFMANN A A, et al. Mitochondrial variation in small brown planthoppers linked to multiple traits and likely reflecting a complex evolutionary trajectory[J]. Mol Ecol, 2019, 28(14): 3306-3323.
|
[33] |
JALALI S, SINGH S, VENKATESAN T. Selection of promising species of trichogrammatid egg parasitoid for field evaluation against coconut leaf eating caterpillar, Opisina arenosella Walker[J]. J Plant Crop, 2002, 30(2): 30-32.
|
[34] |
唐真正, 王谨, 刘向蕊, 等. 热带两种入侵棕榈害虫耐寒性比较[J]. 植物检疫, 2016, 30(2): 40-44.
|
[1] | HUANG Chengyu, CHEN Jianxin, ZHENG Xingyue, WU Fengjinglin, MA Huancheng, WU Jianrong. Identification of pathogen causing leaf spot disease of Parthenocissus tricuspidata and establishment of LAMP rapid detection system[J]. Journal of South China Agricultural University, 2025, 46(1): 89-96. DOI: 10.7671/j.issn.1001-411X.202401012 |
[2] | MUKADDAS Mijit, WANG Hui, PAN Dongxia, SHEN Yao, YANG Liang. Research on rapid detection of Staphylococcus aureus by fluorescent biosensor based on DNAzyme[J]. Journal of South China Agricultural University, 2024, 45(5): 764-771. DOI: 10.7671/j.issn.1001-411X.202405008 |
[3] | CAI Xiang, MA Ruijun, CHEN Yu, YAN Zhenfeng, HUANG Li. Effects of different filtration conditions on the absorption spectra and concentration prediction models of organophosphorus pesticides in natural water[J]. Journal of South China Agricultural University, 2022, 43(1): 102-109. DOI: 10.7671/j.issn.1001-411X.202103033 |
[4] | LIN Huijiao, MOU Guiping, TENG Shaona, ZHANG Haipeng, ZHOU Erxun. A real-time fluorescent PCR method for detection of Botryosphaeria stevensii from apple using TaqMan probe[J]. Journal of South China Agricultural University, 2021, 42(2): 65-70. DOI: 10.7671/j.issn.1001-411X.202004031 |
[5] | ZHU Junling, YE Zuodong, DENG Jieru, GOU Hongchao, CHEN Jinding. Rapid detection of classical swine fever virus by loop-mediatedisothermal amplification combined with lateral flow dipstick method[J]. Journal of South China Agricultural University, 2016, 37(1): 1-7. DOI: 10.7671/j.issn.1001-411X.2016.01.001 |
[6] | SHANG Yi, DONG Jia-wen, SUN Min-hua, HUANG Qiu-fang, WU Xuan-guang, HU Qi-lin. Development and Evaluation of A Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Goose Parvovirus[J]. Journal of South China Agricultural University, 2011, 32(1): 98-102. DOI: 10.7671/j.issn.1001-411X.2011.01.021 |
[7] | KONG Ling-chen,HOU Jia-lei,JIANG Wen-hong,NIE Fei,AO Yan-hua,LIAO Ming,REN Tao. Reverse Transcriptase Loop-Mediated Isothermal Amplification Technique for Rapid Detection of Newcastle Disease Virus[J]. Journal of South China Agricultural University, 2008, 29(4). DOI: 10.7671/j.issn.1001-411X.2008.04.016 |
[8] | WAN Mei-dan,XU Han-hong,HUANG Xiao-xing,LIAO Mei-de,HU Lin. Rapid Detection of Pesticide Residues with BuChE and Indophenol Acetate Reaction System[J]. Journal of South China Agricultural University, 2007, 28(2): 61-64. DOI: 10.7671/j.issn.1001-411X.2007.02.015 |
[9] | ZHAO Li-rong~1,LIAO Jin-ling~2,ZHONG Guo-qiang~1. A rapid method to detect Bursaphelenchus xylophilus and B.mucronatus by PCR[J]. Journal of South China Agricultural University, 2005, 26(2): 59-61. DOI: 10.7671/j.issn.1001-411X.2005.02.015 |
[10] | Deng Xiaoling,Liang Zhihui,Tang Weiwen. Studies on the Rapid Detection of Citrus Huanglongbing Pathogen[J]. Journal of South China Agricultural University, 1999, (1): 1-4. |