Citation: | MUKADDAS Mijit, WANG Hui, PAN Dongxia, et al. Research on rapid detection of Staphylococcus aureus by fluorescent biosensor based on DNAzyme[J]. Journal of South China Agricultural University, 2024, 45(5): 764-771. DOI: 10.7671/j.issn.1001-411X.202405008 |
To solve the problems of time-consuming and complex operation in traditional methods of detecting Staphylococcus aureus, a fluorescent biosensor based on deoxyribonuclease (DNAzyme) was developed to achieve rapid detection of S. aureus.
The fluorescence biosensor was made by combining DNAzyme with specific complementary chain substrate, and optimized for the concentration of biomaterials and pH of solution. Then, the specific detection of five different bacteria such as S. aureus, Escherichia coli, Bacillus, Streptococcus agalactiae and Proteus was performed. Finally, the DNAzyme-based fluorescent biosensor was tested and verified on milk samples.
The fluorescent biosensor based on DNAzyme can detect S. aureus within 3 min at a pH of 6.8, with a linear range of 1−1×107 cfu·mL−1 and a minimum detection limit of 1 cfu·mL−1.
The fluorescent biosensor based on DNAzyme solves the problems of time-consuming and complex operation of traditional detection methods, and realizes the rapid detection of S. aureus in milk, which has significant practical value.
[1] |
徐进强, 王俊书, 金红岩, 等. 家畜相关的金黄色葡萄球菌研究进展[J]. 中国饲料, 2019(24): 19-22.
|
[2] |
TROEMAN D P R, VAN HOUT D, KLUYTMANS J A J W. Antimicrobial approaches in the prevention of Staphylococcus aureus infections: A review[J]. Journal of Antimicrobial Chemotherapy, 2019, 74(2): 281-294.
|
[3] |
JARADAT Z W, ABABNEH Q O, SHA’ABAN S T, et al. Methicillin resistant Staphylococcus aureus and public fomites: A review[J]. Pathogens and Global Health, 2020, 114(8): 426-450. doi: 10.1080/20477724.2020.1824112
|
[4] |
SMITH T C, THAPALIYA D, BHATTA S, et al. Geographic distribution of livestock-associated Staphylococcus aureus in the United States[J]. Microbes and Infection, 2018, 20(6): 323-327. doi: 10.1016/j.micinf.2018.05.004
|
[5] |
ANDRADE M, OLIVEIRA K, MORAIS C, et al. Virulence potential of biofilm-producing Staphylococcus pseudintermedius, Staphylococcus aureus and Staphylococcus coagulans causing skin infections in companion animals[J]. Antibiotics, 2022, 11(10): 1339. doi: 10.3390/antibiotics11101339
|
[6] |
张文静, 吕若一, 修德冕, 等. 畜禽金黄色葡萄球菌流行现状和中草药防控进展[J/OL]. 微生物学通报, (2024-04-11) [2024-05-06]. https://doi.org/10.13344/j.microbiol.china.230966.
|
[7] |
LI Z, TENG Y, FENG S, et al. Microbial responses and changes in metabolic products in bovine uteri infected with Staphylococcus aureus[J]. International Journal of Biological Macromolecules, 2024, 262: 130039. doi: 10.1016/j.ijbiomac.2024.130039
|
[8] |
YANG Y L, QIAN M Y, YI S Q, et al. Monoclonal antibody targeting Staphylococcus aureus surface protein A (SasA) protect against Staphylococcus aureus sepsis and peritonitis in mice[J]. PLoS One, 2016, 11(2): e0149460. doi: 10.1371/journal.pone.0149460
|
[9] |
AHMAD I. 头孢喹肟对牛败血症病原金黄色葡萄球菌药动学/药效学同步关系研究[D]. 武汉: 华中农业大学, 2017.
|
[10] |
YU B, QIAO J, SHEN Y, et al. Protective effects of tenuigenin on Staphylococcus aureus-induced pneumonia in mice[J]. Microbial Pathogenesis, 2017, 110: 385-389. doi: 10.1016/j.micpath.2017.07.023
|
[11] |
李艳艳, 高亚伟, 王靖萱, 等. 奶牛金黄色葡萄球菌性乳房炎诊治[J]. 四川畜牧兽医, 2024, 51(2): 55-57. doi: 10.3969/j.issn.1001-8964.2024.2.scxmsy202402022
|
[12] |
LIU K, MAO W, LIU B, et al. Live S. aureus and heat-killed S. aureus induce different inflammation-associated factors in bovine endometrial tissue in vitro[J]. Molecular Immunology, 2021, 139: 123-130. doi: 10.1016/j.molimm.2021.07.015
|
[13] |
ZHAO W, WANG J, LI X, et al. Deoxycholic acid inhibits Staphylococcus aureus-induced endometritis through regulating TGR5/PKA/NF-κB signaling pathway[J]. International Immunopharmacology, 2023, 118: 110004. doi: 10.1016/j.intimp.2023.110004
|
[14] |
黄兰芳. 某院细菌性食物中毒引起腹泻的病原菌学特征分析[J]. 现代诊断与治疗, 2022, 33(22): 3387-3389.
|
[15] |
ZHANG X, HU X, RAO X. Apoptosis induced by Staphylococcus aureus toxins[J]. Microbiological Research, 2017, 205: 19-24. doi: 10.1016/j.micres.2017.08.006
|
[16] |
毛彦妮. 乳酸菌无细胞上清液和黄芩苷协同影响LuxS/AI-2群体感应系统对金黄色葡萄球菌的调控[D]. 银川: 宁夏大学, 2023.
|
[17] |
LIN R, AKGUN E, ERENAY F S, et al. Effectiveness of methicillin-resistant Staphylococcus aureus surveillance among exposed roommates in community hospitals: Conventional culture versus direct PCR[J]. American Journal of Infection Control, 2023, 51(11): 1242-1249. doi: 10.1016/j.ajic.2023.04.009
|
[18] |
TANSARLI G S, LEBLANC L, AULD D B, et al. Diagnostic accuracy of presurgical Staphylococcus aureus PCR assay compared with culture and post-PCR implementation surgical site infection rates[J]. The Journal of Molecular Diagnostics, 2020, 22(8): 1063-1069. doi: 10.1016/j.jmoldx.2020.05.003
|
[19] |
LIU L, ZHOU X, MA R, et al. High-throughput biomolecular interaction analysis probing by an array fluorescent biosensor platform[J]. Sensors and Actuators B: Chemical, 2018, 259: 888-893. doi: 10.1016/j.snb.2017.12.119
|
[20] |
马莉萍, 李云霞, 聂莹莹, 等. 基于功能核酸的生物传感器对水体中Hg2+的高灵敏检测[J]. 中国生物工程杂志, 2023, 43(7): 53-59.
|
[21] |
HÖFIG H, CERMINARA M, RITTER I, et al. Single-molecule studies on a FRET biosensor: Lessons from a comparison of fluorescent protein equipped versus dye-labeled species[J]. Molecules, 2018, 23(12): 3105. doi: 10.3390/molecules23123105
|
[22] |
YE H, WANG M, YU X, et al. Molecular docking insight into the label-free fluorescence aptasensor for ochratoxin A detection[J]. Molecules, 2023, 28(12): 4841. doi: 10.3390/molecules28124841
|
[23] |
BHARDWAJ N, BHARDWAJ S K, NAYAK M K, et al. Fluorescent nanobiosensors for the targeted detection of foodborne bacteria[J]. TrAC Trends in Analytical Chemistry, 2017, 97: 120-135. doi: 10.1016/j.trac.2017.09.010
|
[24] |
CHEN W, ZHANG Y, LAI Q, et al. Multiple amplification-based fluorometric aptasensor for highly sensitive detection of Staphylococcus aureus[J]. Applied Microbiology and Biotechnology, 2022, 106(19): 6733-6743.
|
[25] |
LI Y, TANG X, WANG N, et al. Argonaute-DNAzyme tandem biosensing for highly sensitive and simultaneous dual-gene detection of methicillin-resistant Staphylococcus aureus[J]. Biosensors and Bioelectronics, 2024, 244: 115758. doi: 10.1016/j.bios.2023.115758
|
[26] |
PERDRIZET U, BLAKLEY B, AL DISSI A. Concentrations and deficiencies of minerals in cattle submitted to a diagnostic laboratory in Saskatchewan from 2003-2012: A retrospective study[J]. Canadian Veterinary Journal, 2020, 61(1): 57-62.
|
[27] |
TORABI S F, WU P, MCGHEE C E, et al. In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(19): 5903-5908. doi: 10.1073/pnas.1420361112
|
[28] |
IHMS H E, LU Y. In vitro selection of metal ion-selective DNAzymes[M]//Ribozymes, 2012: 297-316.
|
[29] |
DONG J, WILLNER I. Dynamic transcription machineries guide the synthesis of temporally operating DNAzymes, gated and cascaded DNAzyme catalysis[J]. ACS Nano, 2023, 17(1): 687-696. doi: 10.1021/acsnano.2c10108
|
[30] |
王树急, 曹汝菲, 段晓雷. 脱氧核酶催化放大效应在微RNA传感中的研究与应用[J/OL]. 中国生物化学与分子生物学报, (2024-01-29) [2024-05-06]. https://doi.org/10.13865/j.cnki.cjbmb.2024.01.1419.
|
[31] |
OUYANG Q, ZHANG M, YANG Y, et al. Mesoporous silica-modified upconversion biosensor coupled with real-time ion release properties for ultrasensitive detection of Staphylococcus aureus in meat[J]. Food Control, 2023, 145: 109444. doi: 10.1016/j.foodcont.2022.109444
|
[32] |
CUI J, ZHOU M, LI Y, et al. A new optical fiber probe-based quantum dots immunofluorescence biosensors in the detection of Staphylococcus aureus[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 665241. doi: 10.3389/fcimb.2021.665241
|
[33] |
CHEN W, ZHANG Y, LAI Q, et al. Multiple amplification-based fluorometric aptasensor for highly sensitive detection of Staphylococcus aureus[J]. Applied Microbiology and Biotechnology, 2022, 106(19/20): 6733-6743.
|
1. |
王亚琴. 食品中致病微生物的检测方法研究. 食品安全导刊. 2025(11): 131-133 .
![]() |