• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LI Jing, CHEN Guifen, AN Yu. Image recognition of Pyrausta nubilalis based on optimized convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(3): 110-116. DOI: 10.7671/j.issn.1001-411X.201907017
Citation: LI Jing, CHEN Guifen, AN Yu. Image recognition of Pyrausta nubilalis based on optimized convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(3): 110-116. DOI: 10.7671/j.issn.1001-411X.201907017

Image recognition of Pyrausta nubilalis based on optimized convolutional neural network

More Information
  • Received Date: July 09, 2019
  • Available Online: May 17, 2023
  • Objective 

    With the continuous development of artificial intelligence and big data technology, aiming at solving the problems of low accuracy and low efficiency in conventional identification methods of corn pest, we proposed a corn borer image identification method based on the improved GoogLeNet convolution-neural network model.

    Method 

    Firstly, through migration learning, the structural knowledge of the Inception-v4 network of GoogLeNet was transferred to the task of corn borer (Pyrausta nubilalis) identification, and the training mode of model construction was established. The data set of neural network training model was obtained by expanding the sample of corn borer image through data enhancement technique. At the same time, the Inception module was used to construct the network model with the ability of multi-scale convolution kernel extraction of the distribution characteristics of multi-scale corn borer, and the activation function, gradient descent algorithm and other model parameters were optimized in the experimental process. Finally, batch normalization (BN) operation was performed to accelerate optimizating model network training, and the model was applied in corn borer identification.

    Result 

    Experimental results of TensorFlow framework showed that the average recognition accuracy of the optimized neural network algorithm for corn borer image was 96.44%.

    Conclusion 

    The convolutional neural network recognition model based on optimization has higher robustness and feasibility, which can provide a reference for identification and intelligent diagnosis of plant pests on corn and other crops.

  • [1]
    杨虎. 20世纪中国玉米种业发展研究[D]. 南京: 南京农业大学, 2011.
    [2]
    王连霞. 齐齐哈尔市玉米螟发生规律的演变及应用赤眼蜂防治技术的研究[D]. 北京: 中国农业科学院, 2014.
    [3]
    苏一峰, 杜克明, 李颖, 等. 基于物联网平台的小麦病虫害诊断系统设计初探[J]. 中国农业科技导报, 2016, 18(2): 86-94.
    [4]
    汪京京, 张武, 刘连忠, 等. 农作物病虫害图像识别技术的研究综述[J]. 计算机工程与科学, 2014, 36(7): 1363-1370. doi: 10.3969/j.issn.1007-130X.2014.07.026
    [5]
    王翔宇, 温皓杰, 李鑫星, 等. 农业主要病害检测与预警技术研究进展分析[J]. 农业机械学报, 2016, 47(9): 266-277. doi: 10.6041/j.issn.1000-1298.2016.09.037
    [6]
    SLADOJEVIC S, ARSENOVIC M, ANDERLA A, et al. Deep neural networks based recognition of plant diseases by leaf image classification[J]. Comput Intel Neurosci, 2016: 3289801. doi: 10.1155/2016/3289801
    [7]
    李松, 魏中浩, 张冰尘, 等. 深度卷积神经网络在迁移学习模式下的SAR目标识别[J]. 中国科学院大学学报, 2018, 35(1): 75-83.
    [8]
    黄双萍, 孙超, 齐龙, 等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报, 2017, 33(20): 169-176. doi: 10.11975/j.issn.1002-6819.2017.20.021
    [9]
    王春华, 韩栋. 自适应控制深度学习和知识挖掘图像分类[J]. 沈阳工业大学学报, 2018, 40(3): 334-339. doi: 10.7688/j.issn.1000-1646.2018.03.17
    [10]
    包晓安, 徐海, 张娜, 等. 基于深度学习的语音识别模型及其在智能家居中的应用[J]. 浙江理工大学学报(自然科学版), 2019, 41(2): 217-223.
    [11]
    戴礼荣, 张仕良, 黄智颖. 基于深度学习的语音识别技术现状与展望[J]. 数据采集与处理, 2017, 32(2): 221-231.
    [12]
    王飞, 陈立, 易绵竹, 等. 新技术驱动的自然语言处理进展[J]. 武汉大学学报(工学版), 2018, 51(8): 669-678.
    [13]
    龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194-201. doi: 10.11975/j.issn.1002-6819.2018.18.024
    [14]
    陈桂芬, 李静, 陈航, 等. 大数据时代人工智能技术在农业领域的研究进展[J]. 吉林农业大学学报, 2018, 40(4): 502-510.
    [15]
    刘立波, 周国民. 基于多层感知神经网络的水稻叶瘟病识别方法[J]. 农业工程学报, 2009, 25(S2): 213-217.
    [16]
    TAN W, ZHAO C, WU H. CNN intelligent early warning for apple skin lesion image acquired by infrared video sensors[J]. High Technology Letters, 2016, 22(1): 67-74.
    [17]
    孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215. doi: 10.11975/j.issn.1002-6819.2017.19.027
    [18]
    梁万杰, 曹宏鑫. 基于卷积神经网络的水稻虫害识别[J]. 江苏农业科学, 2017, 45(20): 241-243.
    [19]
    马浚诚, 杜克明, 郑飞翔, 等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报, 2018, 34(12): 186-192. doi: 10.11975/j.issn.1002-6819.2018.12.022
    [20]
    刘永波, 雷波, 曹艳, 等. 基于深度卷积神经网络的玉米病害识别[J]. 中国农学通报, 2018, 34(36): 159-164.
  • Related Articles

    [1]ZHANG Xianjie, WANG Xiaochan, SUN Guoxiang, SHI Yinyan, WEI Tianxiang, CHEN Hao. Measurement of tomato fruits quantity at different ripening stages based on color point cloud images[J]. Journal of South China Agricultural University, 2022, 43(2): 105-112. DOI: 10.7671/j.issn.1001-411X.202105021
    [2]OU Youjun, LI Jia'er, AI Li. A study on the histology of digestive system in early life stages of Oplegnathus fasciatus[J]. Journal of South China Agricultural University, 2015, 36(1): 23-27. DOI: 10.7671/j.issn.1001-411X.2015.01.005
    [3]LIU Yaqi, LIU Guoshun, TIAN Xi. Effects of Nitrogen Application Rate on Physiological Characteristics of Flue-Cured Tobacco Leaves at the Maturing Stage[J]. Journal of South China Agricultural University, 2013, 34(4): 465-469. DOI: 10.7671/j.issn.1001-411X.2013.04.004
    [4]BAO Ling-feng,LIN Gang,ZHAO De-ming,LI Yun-wu,HE Bin. Resistant Indexes of CMS Line of Yixiang1A and Its Crossing Cultivars During Riped Stage[J]. Journal of South China Agricultural University, 2010, 31(1). DOI: 10.7671/j.issn.1001-411X.2010.01.003
    [5]PANG Xue-qun,ZHANG Hui-ling,GONG Jia-jian,ZHANG Zhao-qi. Effect of Stage SO2 Releaser Combined with Ice-Temperature on Storage Life of Longan Fruit[J]. Journal of South China Agricultural University, 2007, 28(3): 11-14. DOI: 10.7671/j.issn.1001-411X.2007.03.003
    [6]ZHANG Ting-ying,XU Han-hong,HUANG Ji-guang,ZHANG Jing-li,ZHAO Yong. Variations of Rotenone in Different Growth Stages of Plants and Regions[J]. Journal of South China Agricultural University, 2006, 27(3): 48-50. DOI: 10.7671/j.issn.1001-411X.2006.03.013
    [7]WU Zhen-xian,ZHANG Yan-liang,CHEN Yong-ming,JI Zuo-liang,CHEN Wei-xin. Effects of 1 - Methylcyclopropene Treatments at Different Stage of Mature on the Ripening Process of Banana Fruits[J]. Journal of South China Agricultural University, 2001, 22(4): 15-18. DOI: 10.7671/j.issn.1001-411X.2001.04.005
    [8]Chen Xiyu ,Tao Yuliang, Qian Guangxi. ASSAY OF NUTRIENT ELEMENTS IN TNE TOMATO PLANT AT DIFFERENT GROWTH STAGES BY ATOMIC ABSORPTION SPECTROMETRY[J]. Journal of South China Agricultural University, 1994, (1): 160-165.
    [9]Chen Weixin Su Meixia Wang Zhengyong Lin Weizheng. STUDIES ON PHYSIOLOGY AND TECHNOLOGY OF THE RIPENING OF BANANA[J]. Journal of South China Agricultural University, 1993, (2): 102-106.
    [10]Xu Xue-Bin B.S.Vergara,R.M.Visperas Han Huizhen. FURTHER OBSERVATIONS ON THE "CONTRACTION STAGE OF MICROSPORE" IN RICE (ORYZA SATIVA L. )[J]. Journal of South China Agricultural University, 1987, (1).
  • Cited by

    Periodical cited type(9)

    1. 圣文顺,余熊峰,林佳燕,陈欣. 融合注意力与特征金字塔的小尺度目标检测算法. 计算机工程. 2024(01): 242-250 .
    2. 伍仪霖,周子勇. 运用机器学习方法提取Sentinel-2影像烃微渗漏异常——以Marsel 探区为例. 地球物理学报. 2024(04): 1330-1341 .
    3. 满自红,王志成,陈耀年,王让军,王一峰,王明霞,尚素琴. 基于EasyDL平台的甘肃陇南核桃主要病害诊断模型的构建及应用. 西北农业学报. 2024(05): 971-980 .
    4. 徐岸峰,黄学彬,王波. 改进GoogLeNet的自然场景图像多标记分类仿真. 计算机仿真. 2024(11): 258-261+392 .
    5. 王兴旺,郑汉垣,王芳. 白鹤草莓GCD-EF-CV病虫害识别模型研究与应用. 山西农业大学学报(自然科学版). 2023(01): 65-74 .
    6. 王宏乐,叶全洲,王兴林,刘大存,梁振伟. 基于YOLOv7的无人机影像稻穗计数方法研究. 广东农业科学. 2023(07): 74-82 .
    7. 邹立雯,梁春英,周正,李普,李圳鹏,张荣丹. 深度学习在水稻秧苗识别中的应用. 热带农业工程. 2023(04): 93-96 .
    8. 陈裕锋,冯佩雯,凌金生,张书琪,余振鹏,熊琳琳,刘洪,谢家兴. 基于无人机多光谱图像的水稻品种鉴定. 南京农业大学学报. 2023(05): 995-1003 .
    9. 郑晓玲,郑永钊. 基于神经网络的无人机农药喷洒区域智能识别. 黎明职业大学学报. 2023(02): 94-101 .

    Other cited types(8)

Catalog

    Article views (18460) PDF downloads (20800) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return