Citation: | LI Haoyue, CHEN Guifen, PEI Ao. Research on individual recognition of dairy cows based on improved Mask R-CNN[J]. Journal of South China Agricultural University, 2020, 41(6): 161-168. DOI: 10.7671/j.issn.1001-411X.202003030 |
To propose an individual cow recognition method based on the improved Mask R-CNN algorithm, and solve the problem of low efficiency and strong subjectivity of artificially identifying individual cows in traditional dairy farming.
This method optimizes the feature extraction network structure in Mask R-CNN, adopts ResNet-50 network embedded in SE block as backbone, and selects image channels by weighting strategy to improve feature utilization. For the problem of inaccurate target edge positioning during instance segmentation, a boundary weighted loss function is added to construct a new Mask loss function to improve the accuracy of boundary detection. A total of 3000 cow images are trained, validated and tested.
The improved Mask R-CNN model had an average precision (AP) of 100% and IoUMask of 91.34%. Compared with the original Mask R-CNN model, AP increased by 3.28% and IoUMask increased by 5.92%.
The proposed method has strong segmentation accuracy and robustness, and can provide a reference for accurate recognition of cow images under complex farming environment.
[1] |
郑国生, 施正香, 滕光辉. 基于不同行为时间的奶牛健康状况评价[J]. 农业工程学报, 2019, 35(19): 238-244. doi: 10.11975/j.issn.1002-6819.2019.19.029
|
[2] |
何东健, 刘冬, 赵凯旋. 精准畜牧业中动物信息智能感知与行为检测研究进展[J]. 农业机械学报, 2016, 47(5): 231-244. doi: 10.6041/j.issn.1000-1298.2016.05.032
|
[3] |
刘杰鑫, 姜波, 何东健, 等. 基于高斯混合模型与CNN的奶牛个体识别方法研究[J]. 计算机应用与软件, 2018, 35(10): 159-164.
|
[4] |
张满囤, 单新媛, 于洋, 等. 基于小波变换和改进KPCA的奶牛个体识别研究[J]. 浙江农业学报, 2017, 29(12): 2000-2008. doi: 10.3969/j.issn.1004-1524.2017.12.07
|
[5] |
刘忠超, 翟天嵩, 何东健. 精准养殖中奶牛个体信息监测研究现状及进展[J]. 黑龙江畜牧兽医, 2019(13): 30-33.
|
[6] |
汪开英, 赵晓洋, 何勇. 畜禽行为及生理信息的无损监测技术研究进展[J]. 农业工程学报, 2017, 33(20): 197-209. doi: 10.11975/j.issn.1002-6819.2017.20.025
|
[7] |
孙雨坤, 王玉洁, 霍鹏举, 等. 奶牛个体识别方法及其应用研究进展[J]. 中国农业大学学报, 2019, 24(12): 62-70.
|
[8] |
陈娟娟, 刘财兴, 高月芳, 等. 基于改进特征袋模型的奶牛识别算法[J]. 计算机应用, 2016, 36(8): 2346-2351. doi: 10.11772/j.issn.1001-9081.2016.08.2346
|
[9] |
张满囤, 米娜, 于洋, 等. 基于特征融合的奶牛个体识别[J]. 江苏农业科学, 2018, 46(24): 278-281.
|
[10] |
杨阿庆, 薛月菊, 黄华盛, 等. 基于全卷积网络的哺乳母猪图像分割[J]. 农业工程学报, 2017, 33(23): 219-225. doi: 10.11975/j.issn.1002-6819.2017.23.028
|
[11] |
蔡骋, 宋肖肖, 何进荣. 基于计算机视觉的牛脸轮廓提取算法及实现[J]. 农业工程学报, 2017, 33(11): 171-177. doi: 10.11975/j.issn.1002-6819.2017.11.022
|
[12] |
赵凯旋, 何东健. 基于卷积神经网络的奶牛个体身份识别方法[J]. 农业工程学报, 2015, 31(5): 181-187. doi: 10.3969/j.issn.1002-6819.2015.05.026
|
[13] |
王毅恒, 许德章. 基于YOLOv3算法的农场环境下奶牛目标识别[J]. 广东石油化工学院学报, 2019, 29(4): 31-35. doi: 10.3969/j.issn.2095-2562.2019.04.007
|
[14] |
HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE T Pattern Anal, 2017(99): 1.
|
[15] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE T Pattern Anal, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[16] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE T Pattern Anal, 2020, 42(8): 2011-2023.
|
[17] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. IEEE. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas: IEEE Computer Society, 2016.
|
[18] |
LUO Z, MISHRA A, ACHKAR A, et al. Non-local deep features for salient object detection[C]. IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii: IEEE Computer Society, 2017.
|
[19] |
LIU F, LIU P Y, LI B, et al. Deep learning model design of video target tracking based on TensorFlow platform[J]. Laser & Optoelectronics Progress, 2017, 54(9): 091501.
|
[20] |
SUN X D, WU P C, HOI S C H. Face detection using deep learning: An improved faster RCNN approach[J]. Neurocomputing, 2018, 299: 42-50. doi: 10.1016/j.neucom.2018.03.030
|
[21] |
HUANG Z J, HUANG L C, GONG Y C, et al. Mask scoring R-CNN[C]. IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Angeles: IEEE Computer Society, 2019.
|
[1] | XU Xingshi, WANG Yunfei, DENG Hongxing, SONG Huaibo. Nighttime cattle face recognition based on cross-modal shared feature learning[J]. Journal of South China Agricultural University, 2024, 45(5): 793-801. DOI: 10.7671/j.issn.1001-411X.202403020 |
[2] | ZHANG Liyin, ZHANG Ji, YANG Qinglu, LI Yudao, YU Zhenwei, TIAN Fuyang, YU Sufang. Detection of dairy cow feeding behavior based on video and BCE-YOLO model[J]. Journal of South China Agricultural University, 2024, 45(5): 782-792. DOI: 10.7671/j.issn.1001-411X.202404009 |
[3] | LIU Mingyang, CUI Kai, GONG Jinliang, ZHANG Yanfei. Apple fruit recognition at different maturity stages based on image fusion[J]. Journal of South China Agricultural University, 2024, 45(2): 293-303. DOI: 10.7671/j.issn.1001-411X.202212020 |
[4] | LIU Yongmin, HU Kui, NIE Jiawei, XIE Tieqiang. Rice disease and pest identification based on MSDB-ResNet[J]. Journal of South China Agricultural University, 2023, 44(6): 978-985. DOI: 10.7671/j.issn.1001-411X.202208020 |
[5] | ZHENG Xianrun, ZHENG Peng, WANG Wenxiu, CHENG Yahong, SU Yufeng. Rice pest recognition based on multi-scale feature extraction depth residual network[J]. Journal of South China Agricultural University, 2023, 44(3): 438-446. DOI: 10.7671/j.issn.1001-411X.202206037 |
[6] | ZHU Wei, MA Lixin, ZHANG Ping, LIU Deying. Morphological recognition of rice seedlings based on GoogLeNet and UAV image[J]. Journal of South China Agricultural University, 2022, 43(3): 99-106. DOI: 10.7671/j.issn.1001-411X.202107041 |
[7] | ZHANG Dejun, ZHOU Xuecheng, YANG Xudong. Recognition of mango fruit diseases based on image processing and deep transfer learning[J]. Journal of South China Agricultural University, 2021, 42(4): 113-124. DOI: 10.7671/j.issn.1001-411X.202011002 |
[8] | YU Changgeng, LIU Kai. Navel orange recognition based on wavelet transform and Otsu threshold denoising[J]. Journal of South China Agricultural University, 2020, 41(5): 109-114. DOI: 10.7671/j.issn.1001-411X.201912038 |
[9] | LI Jing, CHEN Guifen, AN Yu. Image recognition of Pyrausta nubilalis based on optimized convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(3): 110-116. DOI: 10.7671/j.issn.1001-411X.201907017 |
[10] | WANG Linhui, GAN Haiming, YUE Xuejun, LAN Yubin, WANG Jian, LIU Yongxin, LING Kangjie, CEN Zhenzhao. Design of a precision spraying control system with unmanned aerial vehicle based on image recognition[J]. Journal of South China Agricultural University, 2016, 37(6): 23-30. DOI: 10.7671/j.issn.1001-411X.2016.06.004 |