• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LI Haoyue, CHEN Guifen, PEI Ao. Research on individual recognition of dairy cows based on improved Mask R-CNN[J]. Journal of South China Agricultural University, 2020, 41(6): 161-168. DOI: 10.7671/j.issn.1001-411X.202003030
Citation: LI Haoyue, CHEN Guifen, PEI Ao. Research on individual recognition of dairy cows based on improved Mask R-CNN[J]. Journal of South China Agricultural University, 2020, 41(6): 161-168. DOI: 10.7671/j.issn.1001-411X.202003030

Research on individual recognition of dairy cows based on improved Mask R-CNN

More Information
  • Received Date: March 28, 2020
  • Available Online: May 17, 2023
  • Objective 

    To propose an individual cow recognition method based on the improved Mask R-CNN algorithm, and solve the problem of low efficiency and strong subjectivity of artificially identifying individual cows in traditional dairy farming.

    Method 

    This method optimizes the feature extraction network structure in Mask R-CNN, adopts ResNet-50 network embedded in SE block as backbone, and selects image channels by weighting strategy to improve feature utilization. For the problem of inaccurate target edge positioning during instance segmentation, a boundary weighted loss function is added to construct a new Mask loss function to improve the accuracy of boundary detection. A total of 3000 cow images are trained, validated and tested.

    Result 

    The improved Mask R-CNN model had an average precision (AP) of 100% and IoUMask of 91.34%. Compared with the original Mask R-CNN model, AP increased by 3.28% and IoUMask increased by 5.92%.

    Conclusion 

    The proposed method has strong segmentation accuracy and robustness, and can provide a reference for accurate recognition of cow images under complex farming environment.

  • [1]
    郑国生, 施正香, 滕光辉. 基于不同行为时间的奶牛健康状况评价[J]. 农业工程学报, 2019, 35(19): 238-244. doi: 10.11975/j.issn.1002-6819.2019.19.029
    [2]
    何东健, 刘冬, 赵凯旋. 精准畜牧业中动物信息智能感知与行为检测研究进展[J]. 农业机械学报, 2016, 47(5): 231-244. doi: 10.6041/j.issn.1000-1298.2016.05.032
    [3]
    刘杰鑫, 姜波, 何东健, 等. 基于高斯混合模型与CNN的奶牛个体识别方法研究[J]. 计算机应用与软件, 2018, 35(10): 159-164.
    [4]
    张满囤, 单新媛, 于洋, 等. 基于小波变换和改进KPCA的奶牛个体识别研究[J]. 浙江农业学报, 2017, 29(12): 2000-2008. doi: 10.3969/j.issn.1004-1524.2017.12.07
    [5]
    刘忠超, 翟天嵩, 何东健. 精准养殖中奶牛个体信息监测研究现状及进展[J]. 黑龙江畜牧兽医, 2019(13): 30-33.
    [6]
    汪开英, 赵晓洋, 何勇. 畜禽行为及生理信息的无损监测技术研究进展[J]. 农业工程学报, 2017, 33(20): 197-209. doi: 10.11975/j.issn.1002-6819.2017.20.025
    [7]
    孙雨坤, 王玉洁, 霍鹏举, 等. 奶牛个体识别方法及其应用研究进展[J]. 中国农业大学学报, 2019, 24(12): 62-70.
    [8]
    陈娟娟, 刘财兴, 高月芳, 等. 基于改进特征袋模型的奶牛识别算法[J]. 计算机应用, 2016, 36(8): 2346-2351. doi: 10.11772/j.issn.1001-9081.2016.08.2346
    [9]
    张满囤, 米娜, 于洋, 等. 基于特征融合的奶牛个体识别[J]. 江苏农业科学, 2018, 46(24): 278-281.
    [10]
    杨阿庆, 薛月菊, 黄华盛, 等. 基于全卷积网络的哺乳母猪图像分割[J]. 农业工程学报, 2017, 33(23): 219-225. doi: 10.11975/j.issn.1002-6819.2017.23.028
    [11]
    蔡骋, 宋肖肖, 何进荣. 基于计算机视觉的牛脸轮廓提取算法及实现[J]. 农业工程学报, 2017, 33(11): 171-177. doi: 10.11975/j.issn.1002-6819.2017.11.022
    [12]
    赵凯旋, 何东健. 基于卷积神经网络的奶牛个体身份识别方法[J]. 农业工程学报, 2015, 31(5): 181-187. doi: 10.3969/j.issn.1002-6819.2015.05.026
    [13]
    王毅恒, 许德章. 基于YOLOv3算法的农场环境下奶牛目标识别[J]. 广东石油化工学院学报, 2019, 29(4): 31-35. doi: 10.3969/j.issn.2095-2562.2019.04.007
    [14]
    HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE T Pattern Anal, 2017(99): 1.
    [15]
    REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE T Pattern Anal, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [16]
    HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE T Pattern Anal, 2020, 42(8): 2011-2023.
    [17]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. IEEE. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas: IEEE Computer Society, 2016.
    [18]
    LUO Z, MISHRA A, ACHKAR A, et al. Non-local deep features for salient object detection[C]. IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii: IEEE Computer Society, 2017.
    [19]
    LIU F, LIU P Y, LI B, et al. Deep learning model design of video target tracking based on TensorFlow platform[J]. Laser & Optoelectronics Progress, 2017, 54(9): 091501.
    [20]
    SUN X D, WU P C, HOI S C H. Face detection using deep learning: An improved faster RCNN approach[J]. Neurocomputing, 2018, 299: 42-50. doi: 10.1016/j.neucom.2018.03.030
    [21]
    HUANG Z J, HUANG L C, GONG Y C, et al. Mask scoring R-CNN[C]. IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Angeles: IEEE Computer Society, 2019.

Catalog

    Article views (1037) PDF downloads (1715) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return