• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LI Haoyue, CHEN Guifen, PEI Ao. Research on individual recognition of dairy cows based on improved Mask R-CNN[J]. Journal of South China Agricultural University, 2020, 41(6): 161-168. DOI: 10.7671/j.issn.1001-411X.202003030
Citation: LI Haoyue, CHEN Guifen, PEI Ao. Research on individual recognition of dairy cows based on improved Mask R-CNN[J]. Journal of South China Agricultural University, 2020, 41(6): 161-168. DOI: 10.7671/j.issn.1001-411X.202003030

Research on individual recognition of dairy cows based on improved Mask R-CNN

More Information
  • Received Date: March 28, 2020
  • Available Online: May 17, 2023
  • Objective 

    To propose an individual cow recognition method based on the improved Mask R-CNN algorithm, and solve the problem of low efficiency and strong subjectivity of artificially identifying individual cows in traditional dairy farming.

    Method 

    This method optimizes the feature extraction network structure in Mask R-CNN, adopts ResNet-50 network embedded in SE block as backbone, and selects image channels by weighting strategy to improve feature utilization. For the problem of inaccurate target edge positioning during instance segmentation, a boundary weighted loss function is added to construct a new Mask loss function to improve the accuracy of boundary detection. A total of 3000 cow images are trained, validated and tested.

    Result 

    The improved Mask R-CNN model had an average precision (AP) of 100% and IoUMask of 91.34%. Compared with the original Mask R-CNN model, AP increased by 3.28% and IoUMask increased by 5.92%.

    Conclusion 

    The proposed method has strong segmentation accuracy and robustness, and can provide a reference for accurate recognition of cow images under complex farming environment.

  • [1]
    郑国生, 施正香, 滕光辉. 基于不同行为时间的奶牛健康状况评价[J]. 农业工程学报, 2019, 35(19): 238-244. doi: 10.11975/j.issn.1002-6819.2019.19.029
    [2]
    何东健, 刘冬, 赵凯旋. 精准畜牧业中动物信息智能感知与行为检测研究进展[J]. 农业机械学报, 2016, 47(5): 231-244. doi: 10.6041/j.issn.1000-1298.2016.05.032
    [3]
    刘杰鑫, 姜波, 何东健, 等. 基于高斯混合模型与CNN的奶牛个体识别方法研究[J]. 计算机应用与软件, 2018, 35(10): 159-164.
    [4]
    张满囤, 单新媛, 于洋, 等. 基于小波变换和改进KPCA的奶牛个体识别研究[J]. 浙江农业学报, 2017, 29(12): 2000-2008. doi: 10.3969/j.issn.1004-1524.2017.12.07
    [5]
    刘忠超, 翟天嵩, 何东健. 精准养殖中奶牛个体信息监测研究现状及进展[J]. 黑龙江畜牧兽医, 2019(13): 30-33.
    [6]
    汪开英, 赵晓洋, 何勇. 畜禽行为及生理信息的无损监测技术研究进展[J]. 农业工程学报, 2017, 33(20): 197-209. doi: 10.11975/j.issn.1002-6819.2017.20.025
    [7]
    孙雨坤, 王玉洁, 霍鹏举, 等. 奶牛个体识别方法及其应用研究进展[J]. 中国农业大学学报, 2019, 24(12): 62-70.
    [8]
    陈娟娟, 刘财兴, 高月芳, 等. 基于改进特征袋模型的奶牛识别算法[J]. 计算机应用, 2016, 36(8): 2346-2351. doi: 10.11772/j.issn.1001-9081.2016.08.2346
    [9]
    张满囤, 米娜, 于洋, 等. 基于特征融合的奶牛个体识别[J]. 江苏农业科学, 2018, 46(24): 278-281.
    [10]
    杨阿庆, 薛月菊, 黄华盛, 等. 基于全卷积网络的哺乳母猪图像分割[J]. 农业工程学报, 2017, 33(23): 219-225. doi: 10.11975/j.issn.1002-6819.2017.23.028
    [11]
    蔡骋, 宋肖肖, 何进荣. 基于计算机视觉的牛脸轮廓提取算法及实现[J]. 农业工程学报, 2017, 33(11): 171-177. doi: 10.11975/j.issn.1002-6819.2017.11.022
    [12]
    赵凯旋, 何东健. 基于卷积神经网络的奶牛个体身份识别方法[J]. 农业工程学报, 2015, 31(5): 181-187. doi: 10.3969/j.issn.1002-6819.2015.05.026
    [13]
    王毅恒, 许德章. 基于YOLOv3算法的农场环境下奶牛目标识别[J]. 广东石油化工学院学报, 2019, 29(4): 31-35. doi: 10.3969/j.issn.2095-2562.2019.04.007
    [14]
    HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE T Pattern Anal, 2017(99): 1.
    [15]
    REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE T Pattern Anal, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [16]
    HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE T Pattern Anal, 2020, 42(8): 2011-2023.
    [17]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. IEEE. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas: IEEE Computer Society, 2016.
    [18]
    LUO Z, MISHRA A, ACHKAR A, et al. Non-local deep features for salient object detection[C]. IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii: IEEE Computer Society, 2017.
    [19]
    LIU F, LIU P Y, LI B, et al. Deep learning model design of video target tracking based on TensorFlow platform[J]. Laser & Optoelectronics Progress, 2017, 54(9): 091501.
    [20]
    SUN X D, WU P C, HOI S C H. Face detection using deep learning: An improved faster RCNN approach[J]. Neurocomputing, 2018, 299: 42-50. doi: 10.1016/j.neucom.2018.03.030
    [21]
    HUANG Z J, HUANG L C, GONG Y C, et al. Mask scoring R-CNN[C]. IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Angeles: IEEE Computer Society, 2019.
  • Related Articles

    [1]XU Xingshi, WANG Yunfei, DENG Hongxing, SONG Huaibo. Nighttime cattle face recognition based on cross-modal shared feature learning[J]. Journal of South China Agricultural University, 2024, 45(5): 793-801. DOI: 10.7671/j.issn.1001-411X.202403020
    [2]ZHANG Liyin, ZHANG Ji, YANG Qinglu, LI Yudao, YU Zhenwei, TIAN Fuyang, YU Sufang. Detection of dairy cow feeding behavior based on video and BCE-YOLO model[J]. Journal of South China Agricultural University, 2024, 45(5): 782-792. DOI: 10.7671/j.issn.1001-411X.202404009
    [3]LIU Mingyang, CUI Kai, GONG Jinliang, ZHANG Yanfei. Apple fruit recognition at different maturity stages based on image fusion[J]. Journal of South China Agricultural University, 2024, 45(2): 293-303. DOI: 10.7671/j.issn.1001-411X.202212020
    [4]LIU Yongmin, HU Kui, NIE Jiawei, XIE Tieqiang. Rice disease and pest identification based on MSDB-ResNet[J]. Journal of South China Agricultural University, 2023, 44(6): 978-985. DOI: 10.7671/j.issn.1001-411X.202208020
    [5]ZHENG Xianrun, ZHENG Peng, WANG Wenxiu, CHENG Yahong, SU Yufeng. Rice pest recognition based on multi-scale feature extraction depth residual network[J]. Journal of South China Agricultural University, 2023, 44(3): 438-446. DOI: 10.7671/j.issn.1001-411X.202206037
    [6]ZHU Wei, MA Lixin, ZHANG Ping, LIU Deying. Morphological recognition of rice seedlings based on GoogLeNet and UAV image[J]. Journal of South China Agricultural University, 2022, 43(3): 99-106. DOI: 10.7671/j.issn.1001-411X.202107041
    [7]ZHANG Dejun, ZHOU Xuecheng, YANG Xudong. Recognition of mango fruit diseases based on image processing and deep transfer learning[J]. Journal of South China Agricultural University, 2021, 42(4): 113-124. DOI: 10.7671/j.issn.1001-411X.202011002
    [8]YU Changgeng, LIU Kai. Navel orange recognition based on wavelet transform and Otsu threshold denoising[J]. Journal of South China Agricultural University, 2020, 41(5): 109-114. DOI: 10.7671/j.issn.1001-411X.201912038
    [9]LI Jing, CHEN Guifen, AN Yu. Image recognition of Pyrausta nubilalis based on optimized convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(3): 110-116. DOI: 10.7671/j.issn.1001-411X.201907017
    [10]WANG Linhui, GAN Haiming, YUE Xuejun, LAN Yubin, WANG Jian, LIU Yongxin, LING Kangjie, CEN Zhenzhao. Design of a precision spraying control system with unmanned aerial vehicle based on image recognition[J]. Journal of South China Agricultural University, 2016, 37(6): 23-30. DOI: 10.7671/j.issn.1001-411X.2016.06.004
  • Cited by

    Periodical cited type(15)

    1. 王楠,廖永琴,施竹凤,申云鑫,杨童雨,冯路遥,矣小鹏,唐加菜,陈齐斌,杨佩文. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘. 生物技术通报. 2024(02): 277-288 .
    2. 甘林,代玉立,刘晓菲,兰成忠,杨秀娟. 香蕉枯萎病高效拮抗土著细菌的筛选及其防效. 西北农林科技大学学报(自然科学版). 2024(06): 95-105 .
    3. 梅耀天,赵霞,杨淞杰,封传红. 解淀粉芽孢杆菌在农业病害防治中的应用及发展建议. 农药科学与管理. 2024(08): 28-32 .
    4. 熊新颖,韩树全,罗立娜,卢加举,贺尔奇,齐炳森,魏鹏程,卢振亚. 生防菌对香蕉防病及促生作用的研究进展. 农技服务. 2024(09): 35-40 .
    5. 杨东亚,祁瑞雪,李昭轩,林薇,马慧,张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果. 生物技术通报. 2023(02): 211-220 .
    6. 佟德利,刘静华,于鑫,朱广鹏,李梦琦,贺海升. 水稻恶苗病拮抗细菌的筛选及生防机制. 沈阳师范大学学报(自然科学版). 2023(02): 186-192 .
    7. 虞凡枫,赵进,孙铭悦,樊子婧,陈芳,牛世全. 黄瓜枯萎病拮抗芽孢杆菌A7-3-14的筛选及鉴定. 北方园艺. 2022(03): 41-46 .
    8. 朱咏珊,罗晓欣,梁浩然,陈正桐,刘成,曹凯,刘少群,周而勋,舒灿伟,郑鹏. 一株茶树根际细菌的鉴定与生防效果研究. 茶叶科学. 2022(01): 87-100 .
    9. 周智博,王卿惠,郭欣欣,徐婧怡,苑世伟,陈彦龙,王世伟. 解淀粉芽孢杆菌抑菌蛋白研究进展. 高师理科学刊. 2022(04): 64-69 .
    10. 刘连金,李正令,李雪理,李兴田,侯青,杨友联,廖旺姣,严凯,张晓勇. 八角炭疽病生防菌株筛选及发酵条件研究. 植物保护. 2022(05): 204-211 .
    11. 张强,王胜光,吴利民,姜志龙,孟洁,陆宁海. 小麦茎基腐病生防菌HB-081的鉴定及抑菌活性. 河南科技学院学报(自然科学版). 2022(06): 7-14 .
    12. 凌晓宁,鄢陆琪,张荣,章启慧,李昆太. 一株拮抗柑橘绿霉病海洋微生物的分离筛选鉴定及其所产活性物质稳定性研究. 江西农业大学学报. 2022(06): 1529-1537 .
    13. 陶雪菊,苟兴华,何成霞. 脂肽微生物的研究进展. 成都大学学报(自然科学版). 2021(02): 119-127 .
    14. 陈斌,韩海亮,侯俊峰,包斐,谭禾平,王桂跃,赵福成. 玉米细菌性茎腐病研究进展. 中国植保导刊. 2021(08): 25-29+65 .
    15. 黄小琴,杨潇湘,张蕾,张重梅,鲜赟曦,周西全,刘勇. 解淀粉芽孢杆菌Bam22促进茶树抽芽及蚧壳虫防治效果. 四川农业科技. 2021(11): 56-57+62 .

    Other cited types(7)

Catalog

    Article views (1025) PDF downloads (1715) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return