• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHENG Xianrun, ZHENG Peng, WANG Wenxiu, et al. Rice pest recognition based on multi-scale feature extraction depth residual network[J]. Journal of South China Agricultural University, 2023, 44(3): 438-446. DOI: 10.7671/j.issn.1001-411X.202206037
Citation: ZHENG Xianrun, ZHENG Peng, WANG Wenxiu, et al. Rice pest recognition based on multi-scale feature extraction depth residual network[J]. Journal of South China Agricultural University, 2023, 44(3): 438-446. DOI: 10.7671/j.issn.1001-411X.202206037

Rice pest recognition based on multi-scale feature extraction depth residual network

More Information
  • Received Date: June 23, 2022
  • Available Online: May 17, 2023
  • Objective 

    In the process of rice production, different control schemes need to be adopted for different pests. The accurate identification and classification of rice pests are the premise of formulating targeted control program.

    Method 

    A deep residual network of multi-scale feature extraction was proposed based on the Res2Net structure, which could extract pest characteristics more accurately and realize rice pest identification in complex natural background. This network adopted an improved residual structure, replaced the original convolutional kernel with hierarchical class residual connections, increased the sensing field of each network layer, and could extract multi-scale features at a more fine-grained degree.

    Result 

    The results showed that the model trained by this network could effectively identify rice pests in natural background. The average recognition accuracy of proposed model reached 92.023% on the self-built image dataset containing 22 kinds of the common rice pests, which was superior to the traditional ResNet, VGG and other networks.

    Conclusion 

    This network can be applied to the automatic monitoring system of rice insect status, which provides a reference for the realization of machine vision monitoring of rice pests.

  • [1]
    梁勇, 邱荣洲, 李志鹏, 等. 基于深度学习的水稻主要害虫识别方法[J/OL]. 农业机械学报, (2022-05-19)[2022-06-08]. http://kns.cnki.net/kcms/detail/11.1964.S.20220519.0919.002.html.
    [2]
    杨红云, 肖小梅, 黄琼, 等. 基于卷积神经网络和迁移学习的水稻害虫识别[J]. 激光与光电子学进展, 2022, 59(16): 333-340.
    [3]
    姚青, 谷嘉乐, 吕军, 等. 改进RetinaNet的水稻冠层害虫为害状自动检测模型[J]. 农业工程学报, 2020, 36(15): 182-188. doi: 10.11975/j.issn.1002-6819.2020.15.023
    [4]
    刘德营, 王家亮, 林相泽, 等. 基于卷积神经网络的白背飞虱识别方法[J]. 农业机械学报, 2018, 49(5): 51-56. doi: 10.6041/j.issn.1000-1298.2018.05.006
    [5]
    谢成军, 李瑞, 董伟, 等. 基于稀疏编码金字塔模型的农田害虫图像识别[J]. 农业工程学报, 2016, 32(17): 144-151. doi: 10.11975/j.issn.1002-6819.2016.17.020
    [6]
    XIAO D Q, FENG J Z, LIN T Y, et al. Classification and recognition scheme for vegetable pests based on the BOF-SVM model[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(3): 190-196. doi: 10.25165/j.ijabe.20181103.3477
    [7]
    张博, 张苗辉, 陈运忠. 基于空间金字塔池化和深度卷积神经网络的作物害虫识别[J]. 农业工程学报, 2019, 35(19): 209-215. doi: 10.11975/j.issn.1002-6819.2019.19.025
    [8]
    程科, 孙玮, 高尚. 一种水稻田稻飞虱图像识别的混合算法[J]. 农机化研究, 2015, 37(11): 17-21. doi: 10.3969/j.issn.1003-188X.2015.11.004
    [9]
    鲍文霞, 吴德钊, 胡根生, 等. 基于轻量型残差网络的自然场景水稻害虫识别[J]. 农业工程学报, 2021, 37(16): 145-152. doi: 10.11975/j.issn.1002-6819.2021.16.018
    [10]
    LU X Y, YANG R, ZHOU J, et al. A hybrid model of ghost-convolution enlightened transformer for effective diagnosis of grape leaf disease and pest[J]. Journal of King Saud University (Computer and Information Sciences), 2022, 34(5): 1755-1767. doi: 10.1016/j.jksuci.2022.03.006
    [11]
    LI H, LI S F, YU J G, et al. Plant disease and insect pest identification based on vision transformer[C]// SPIE. International Conference on Internet of Things and Machine Learning (IoTML 2021). Shanghai: SPIE , 2021: 194-201.
    [12]
    YUAN L, CHEN Y, WANG T, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet[C]//IEEE/CVF. IEEE/CVF International Conference on Computer Vision. Montreal : IEEE/CVF, 2021: 558-567.
    [13]
    HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition. CA: IEEE, 2016: 770-778.
    [14]
    GAO S H, CHENG M M, ZHAO K, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. doi: 10.1109/TPAMI.2019.2938758
    [15]
    HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks [C]//IEEE/CVF. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019). Los Angeles: IEEE/CVF, 2019: 558-567.
    [16]
    IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//JMLR. Proceedings of the 32nd International Conference on Machine Learning. Lille: W&CP, 2015: 448-456.
    [17]
    LIN M, CHEN Q, YAN S. Network in network[J/OL]. Neural and Evolutionary Computing, (2013-10-16)[2022-04-26]. https://doi.org/10.48550/arXiv.1312.4400.
    [18]
    WU X P, ZHAN C, LAI Y K, et al. IP102: A large-scale benchmark dataset for insect pest recognition[C]// IEEE/CVF. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019) . Los Angeles: IEEE/CVF, 2019: 8787-8796.
    [19]
    中国科技出版传媒股份有限公司. 中国生物志库[DB/OL]. (2008-08-28)[2022-04-26]. https://species.sciencereading.cn/biology/v/biologicalIndex/122.html.
    [20]
    彭旭, 饶元, 乔焰. 基于宽度卷积神经网络的异常农情数据检测方法[J]. 华南农业大学学报, 2022, 43(2): 113-121. doi: 10.7671/j.issn.1001-411X.202103050
    [21]
    PENG Z L, HUANG W , GU S Z , et al. Conformer: Local features coupling global representations for visual recognition[C]//IEEE/CVF. Proceedings of the IEEE/CVF International Conference on Computer Vision. Los Angeles: IEEE/CVF, 2021: 367-376.
  • Related Articles

    [1]ZHANG Xianjie, WANG Xiaochan, SUN Guoxiang, SHI Yinyan, WEI Tianxiang, CHEN Hao. Measurement of tomato fruits quantity at different ripening stages based on color point cloud images[J]. Journal of South China Agricultural University, 2022, 43(2): 105-112. DOI: 10.7671/j.issn.1001-411X.202105021
    [2]OU Youjun, LI Jia'er, AI Li. A study on the histology of digestive system in early life stages of Oplegnathus fasciatus[J]. Journal of South China Agricultural University, 2015, 36(1): 23-27. DOI: 10.7671/j.issn.1001-411X.2015.01.005
    [3]LIU Yaqi, LIU Guoshun, TIAN Xi. Effects of Nitrogen Application Rate on Physiological Characteristics of Flue-Cured Tobacco Leaves at the Maturing Stage[J]. Journal of South China Agricultural University, 2013, 34(4): 465-469. DOI: 10.7671/j.issn.1001-411X.2013.04.004
    [4]BAO Ling-feng,LIN Gang,ZHAO De-ming,LI Yun-wu,HE Bin. Resistant Indexes of CMS Line of Yixiang1A and Its Crossing Cultivars During Riped Stage[J]. Journal of South China Agricultural University, 2010, 31(1). DOI: 10.7671/j.issn.1001-411X.2010.01.003
    [5]PANG Xue-qun,ZHANG Hui-ling,GONG Jia-jian,ZHANG Zhao-qi. Effect of Stage SO2 Releaser Combined with Ice-Temperature on Storage Life of Longan Fruit[J]. Journal of South China Agricultural University, 2007, 28(3): 11-14. DOI: 10.7671/j.issn.1001-411X.2007.03.003
    [6]ZHANG Ting-ying,XU Han-hong,HUANG Ji-guang,ZHANG Jing-li,ZHAO Yong. Variations of Rotenone in Different Growth Stages of Plants and Regions[J]. Journal of South China Agricultural University, 2006, 27(3): 48-50. DOI: 10.7671/j.issn.1001-411X.2006.03.013
    [7]WU Zhen-xian,ZHANG Yan-liang,CHEN Yong-ming,JI Zuo-liang,CHEN Wei-xin. Effects of 1 - Methylcyclopropene Treatments at Different Stage of Mature on the Ripening Process of Banana Fruits[J]. Journal of South China Agricultural University, 2001, 22(4): 15-18. DOI: 10.7671/j.issn.1001-411X.2001.04.005
    [8]Chen Xiyu ,Tao Yuliang, Qian Guangxi. ASSAY OF NUTRIENT ELEMENTS IN TNE TOMATO PLANT AT DIFFERENT GROWTH STAGES BY ATOMIC ABSORPTION SPECTROMETRY[J]. Journal of South China Agricultural University, 1994, (1): 160-165.
    [9]Chen Weixin Su Meixia Wang Zhengyong Lin Weizheng. STUDIES ON PHYSIOLOGY AND TECHNOLOGY OF THE RIPENING OF BANANA[J]. Journal of South China Agricultural University, 1993, (2): 102-106.
    [10]Xu Xue-Bin B.S.Vergara,R.M.Visperas Han Huizhen. FURTHER OBSERVATIONS ON THE "CONTRACTION STAGE OF MICROSPORE" IN RICE (ORYZA SATIVA L. )[J]. Journal of South China Agricultural University, 1987, (1).
  • Cited by

    Periodical cited type(9)

    1. 圣文顺,余熊峰,林佳燕,陈欣. 融合注意力与特征金字塔的小尺度目标检测算法. 计算机工程. 2024(01): 242-250 .
    2. 伍仪霖,周子勇. 运用机器学习方法提取Sentinel-2影像烃微渗漏异常——以Marsel 探区为例. 地球物理学报. 2024(04): 1330-1341 .
    3. 满自红,王志成,陈耀年,王让军,王一峰,王明霞,尚素琴. 基于EasyDL平台的甘肃陇南核桃主要病害诊断模型的构建及应用. 西北农业学报. 2024(05): 971-980 .
    4. 徐岸峰,黄学彬,王波. 改进GoogLeNet的自然场景图像多标记分类仿真. 计算机仿真. 2024(11): 258-261+392 .
    5. 王兴旺,郑汉垣,王芳. 白鹤草莓GCD-EF-CV病虫害识别模型研究与应用. 山西农业大学学报(自然科学版). 2023(01): 65-74 .
    6. 王宏乐,叶全洲,王兴林,刘大存,梁振伟. 基于YOLOv7的无人机影像稻穗计数方法研究. 广东农业科学. 2023(07): 74-82 .
    7. 邹立雯,梁春英,周正,李普,李圳鹏,张荣丹. 深度学习在水稻秧苗识别中的应用. 热带农业工程. 2023(04): 93-96 .
    8. 陈裕锋,冯佩雯,凌金生,张书琪,余振鹏,熊琳琳,刘洪,谢家兴. 基于无人机多光谱图像的水稻品种鉴定. 南京农业大学学报. 2023(05): 995-1003 .
    9. 郑晓玲,郑永钊. 基于神经网络的无人机农药喷洒区域智能识别. 黎明职业大学学报. 2023(02): 94-101 .

    Other cited types(8)

Catalog

    Article views (110) PDF downloads (34) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return