YUE Dong, XIE Peipei, LU Jingyi, et al. Effects of α-ketoglutaric acid produced by solid fermentation on mouse growth, intestinal structure and immune function[J]. Journal of South China Agricultural University, 2020, 41(2): 1-9. DOI: 10.7671/j.issn.1001-411X.201905020
    Citation: YUE Dong, XIE Peipei, LU Jingyi, et al. Effects of α-ketoglutaric acid produced by solid fermentation on mouse growth, intestinal structure and immune function[J]. Journal of South China Agricultural University, 2020, 41(2): 1-9. DOI: 10.7671/j.issn.1001-411X.201905020

    Effects of α-ketoglutaric acid produced by solid fermentation on mouse growth, intestinal structure and immune function

    More Information
    • Received Date: May 10, 2019
    • Available Online: May 17, 2023
    • Objective 

      To screen strains for producing α-ketoglutaric acid by solid fermentation, and study the effects of fermentation products on animal growth, intestinal structure and immune function.

      Method 

      Nine strains (including lactic acid bacteria, yeast and Aspergillus) were fermented and α-ketoglutaric acid content in the fermentation products was detected. Succinic acid was added during the fermentation to study its effect on the production rate of α-ketoglutaric acid. Subsequently, sixteen 4-week-old C57/BL mice were randomly divided into two groups, 5% normal fermented material or 5% α-ketoglutarate-rich fermented material was added to the common diet for four weeks. Animal feeding and growth, intestinal structure, and phagocytosis and blood picture of monocyte-macrophages were analyzed.

      Result 

      The solid fermentation of yeast produced a trace amount of α-ketoglutaric acid, Bacillus subtilis produced about 60 μg/g α-ketoglutaric acid, and α-ketoglutaric acid was not detected using other strains. The addition of succinic acid to the solid fermentation of Bacillus subtilis promoted the accumulation of α-ketoglutaric acid with the maximum production rate of 0.3%. Dietary supplementation of 5% targeted α-ketoglutarate fermentation product slightly reduced body weight and body weight gain of mice(P>0.05), significantly increased the soleus muscle weight of mice (P<0.05), and significantly reduced brown fat weight in mice (P<0.05). The fermentation product had no significant effect on the villus length and crypt depth of mouse ileum and jejunum. Blood and immunological indicators revealed thatα-ketoglutarate-rich fermentation product significantly reduced the percentage of neutrophils, increased the percentage of lymphocyte, and increased the content of red blood cell hemoglobin. Moreover, the fermentation product also significantly increased the phagocytic function of mouse monocyte-macrophages (P<0.05).

      Conclusion 

      The addition of succinic acid can promote accumulation of α-ketoglutaric acid in the solid fermentation process of Bacillus subtilis. Adding α-ketoglutarate-rich fermentation in the diet can significantly increase the muscle weight, decrease the fat weight of mice, and significantly improve the immune function of mice.

    • [1]
      YEH S L, LAI Y N, SHANG H F, et al. Effects of glutamine supplementation on innate immune response in rats with gut-derived sepsis[J]. Brit J Nutr, 2004, 91(3): 423-429. doi: 10.1079/BJN20031069
      [2]
      陈家顺, 苏文璇, 符晨星, 等. α−酮戊二酸的生理功能及其在动物生产中的应用[J]. 动物营养学报, 2018, 30(10): 29-38.
      [3]
      CHEN J, SU W, KANG B, et al. Supplementation with alpha-ketoglutarate to a low-protein diet enhances amino acid synthesis in tissues and improves protein metabolism in the skeletal muscle of growing pigs[J]. Amino acids, 2018, 50(11): 1525-1537. doi: 10.1007/s00726-018-2618-3
      [4]
      SPENCER G J, MCGRATH C J, GENEVER P G. Current perspectives on NMDA-type glutamate signalling in bone[J]. Int J Biochem Cell Biol, 2007, 39(6): 1089-1104. doi: 10.1016/j.biocel.2006.11.002
      [5]
      CHIN R M, FU X, PAI M Y, et al. The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR[J]. Nature, 2014, 510(7505): 397-401. doi: 10.1038/nature13264
      [6]
      RAIMUNDO N, BAYSAL B E, SHADEL G S. Revisiting the TCA cycle: Signaling to tumor formation[J]. Trends Mol Med, 2011, 17(11): 641-649. doi: 10.1016/j.molmed.2011.06.001
      [7]
      SAUER M, PORRO D, MATTANOVICH D, et al. Microbial production of organic acids: Expanding the markets[J]. Trends Biotechnol, 2008, 26(2): 100-108. doi: 10.1016/j.tibtech.2007.11.006
      [8]
      郭洪伟, 堵国成, 周景文, 等. 微生物发酵生产α−酮戊二酸研究进展[J]. 生物工程学报, 2013, 29(2): 141-152.
      [9]
      刘艳新, 刘占英, 倪慧娟, 等. 微生物发酵饲料的研究进展与前景展望[J]. 饲料博览, 2017(2): 15-22. doi: 10.3969/j.issn.1001-0084.2017.02.005
      [10]
      MORGUNOV I G, KAMZOLOVA S V, PEREVOZNIKOVA O A, et al. Pyruvic acid production by a thiamine auxotroph of Yarrowia lipolytica[J]. Process Biochem, 2004, 39(11): 1469-1474. doi: 10.1016/S0032-9592(03)00259-0
      [11]
      CHERNYAVSKAYA O G, SHISHKANOVA N V, IL'CHENKO A P, et al. Synthesis of alpha-ketoglutaric acid by Yarrowia lipolytica yeast grown on ethanol[J]. Appl Microbiol Biotechnol, 2000, 53(2): 152-158. doi: 10.1007/s002530050002
      [12]
      LOCKWOOD L B, STODOLA F H. Preliminary studies on the production of alpha-ketoglutaric acid by Pseudomonas fluorescens[J]. J Biol Chem, 1946, 164(1): 81-83.
      [13]
      LIU Y, HUANG J, HOU Y, et al. Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs[J]. Br J Nutr, 2008, 100(3): 552-560. doi: 10.1017/S0007114508911612
      [14]
      BERGEN W G, WU G. Intestinal nitrogen recycling and utilization in health and disease[J]. J Nutr, 2009, 139(5): 821-825. doi: 10.3945/jn.109.104497
      [15]
      FLYNN N E, BIRD J G, GUTHRIE A S. Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine[J]. Amino acids, 2009, 37(1): 123-129. doi: 10.1007/s00726-008-0206-7
      [16]
      KRISTENSEN N B, JUNGVID H, FERNANDEZ J A, et al. Absorption and metabolism of alpha-ketoglutarate in growing pigs[J]. J Anim Physiol Ani N, 2002, 86(7/8): 239-245.
      [17]
      HOU Y, YAO K, WANG L, et al. Effects of alpha-ketoglutarate on energy status in the intestinal mucosa of weaned piglets chronically challenged with lipopolysaccharide[J]. Br J Nutr, 2011, 106(3): 357-363. doi: 10.1017/S0007114511000249
      [18]
      HOU Y, WANG L, DING B, et al. Dietary alpha-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets[J]. Amino acids, 2010, 39(2): 555-564. doi: 10.1007/s00726-010-0473-y
      [19]
      PARRY-BILLINGS M, EVANS J, CALDER P C, et al. Does glutamine contribute to immunosuppression after major burns[J]. Lancet, 1990, 336(8714): 523-525. doi: 10.1016/0140-6736(90)92083-T
    • Related Articles

      [1]YANG Taijiao, ZHANG Wei, LUO Jianmei, LI Qing, NIE Shanshan, LIAO Shimei, FU Tao, YAN Xiaohui. Antifungal activity of Mikania micrantha extract against Magnaporthe oxyzae[J]. Journal of South China Agricultural University, 2025, 46(1): 81-88. DOI: 10.7671/j.issn.1001-411X.202311015
      [2]ZHAO Chuanchao, CONG Sen, LIANG Siyi, XIE Huabin, LU Wenyu, XIAO Wuming, HUANG Ming, GUO Tao, WANG Jiafeng. Development and application of KASP marker for rice blast resistance gene Pi2[J]. Journal of South China Agricultural University, 2023, 44(5): 725-734. DOI: 10.7671/j.issn.1001-411X.202304026
      [3]XIAO Wu-ming, SUN Da-yuan, ZHANG Jing-xin, WANG Hui, GUO Tao, LIU Yong-zhu, ZHU Xiao-yuan, YANG Qi-yun, CHEN Zhi-qiang. Evaluation on the Rice Blast Resistance of Three Space-Induced Rice Mutant Lines and Analysis of the Resistant Heredity[J]. Journal of South China Agricultural University, 2012, 33(3): 273-276. DOI: 10.7671/j.issn.1001-411X.2012.03.001
      [4]LIU Jun-bo, GAO Chen, GAO Jie, MA Jing-yong, CHANG Hai-bo. Effects of Silicon on the Ultrastructure of Oryza sativa Leaves Infected by Magnaporthe grisea[J]. Journal of South China Agricultural University, 2012, 33(1): 40-43. DOI: 10.7671/j.issn.1001-411X.2012.01.008
      [5]ZHANG Yao-mou,CHEN Jun,XU Han-hong,JIN Gui-yu. Synthesis of 1- ( 1 H- 1,2,4-triazolyl) - 1- cycloalkyl- (sub) phenylmethanol[J]. Journal of South China Agricultural University, 2005, 26(1): 67-69. DOI: 10.7671/j.issn.1001-411X.2005.01.018
      [6]WANG Hui~1,CHEN Zhi-qiang~1,YANG Qi-yun~2,LI Li~1,HONG Yan-bin~1,ZHANG Jian-guo~1,ZHU Xiao-yuan~2,LIN Pei-zhen~2. Variation of major agronomic characters and resistance to blast of mutant lines by space mutation in Oryza sativa[J]. Journal of South China Agricultural University, 2004, 25(4): 1-5. DOI: 10.7671/j.issn.1001-411X.2004.04.001
      [7]Identification and Evaluation of the Rice Resistance to Magnaporthe grisea Populations[J]. Journal of South China Agricultural University, 2003, 24(2): 30-33. DOI: 10.7671/j.issn.1001-411X.2003.02.009
      [8]CHEN Jin-ding,LIAO Ming,XIN Chao-an. Sequence Analysis of Fusion Protein Gene of the Chinese Strain F48E9 of Newcastle Disease Virus[J]. Journal of South China Agricultural University, 2000, (3): 75-77. DOI: 10.7671/j.issn.1001-411X.2000.03.020
      [9]Pan Ruqian,Kang Bijian,Huang Jianmin,Xu Qifeng. Virulence Specialization of Rice Blast Fungus[J]. Journal of South China Agricultural University, 1999, (3): 15-18.
      [10]Chen Zhiqiang. INVESTIGATIONS ON THE MECHANISM OF RESISTANCE TO RICE BLAST DISEASE[J]. Journal of South China Agricultural University, 1989, (3): 82-91.
    • Cited by

      Periodical cited type(2)

      1. 王赫川,崔卫国,张涵,李天峰,尹国安,郭庆,李井春. α-酮戊二酸对湖羊精子质量与血浆生化指标的影响. 饲料工业. 2024(11): 55-61 .
      2. 张启新,周游,黄飞. 谷氨酰胺酶抑制剂CB-839介导T细胞效应抑制肺癌细胞中αKGA、Gln转化的作用机制. 国际检验医学杂志. 2023(05): 582-587 .

      Other cited types(1)

    Catalog

      Article views (2633) PDF downloads (3210) Cited by(3)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return