DING Yuling, XU Shuhan, LIU Wenchao, et al. Carbon footprint assessment of rice-frog coculture system[J]. Journal of South China Agricultural University, 2024, 45(6): 939-948. DOI: 10.7671/j.issn.1001-411X.202406048
    Citation: DING Yuling, XU Shuhan, LIU Wenchao, et al. Carbon footprint assessment of rice-frog coculture system[J]. Journal of South China Agricultural University, 2024, 45(6): 939-948. DOI: 10.7671/j.issn.1001-411X.202406048

    Carbon footprint assessment of rice-frog coculture system

    More Information
    • Received Date: June 04, 2024
    • Available Online: September 08, 2024
    • Published Date: September 22, 2024
    • Objective 

      The carbon footprint of rice-frog ecological breeding model was systematically studied in order to provide scientific basis and optimization suggestions for the sustainable development of this model.

      Method 

      The carbon footprints of traditional rice monoculture (TR), green rice-frog coculture (GF) and organic rice-frog coculture (OF) modes were evaluated by life cycle assessment.

      Result 

      The carbon footprints per unit area of GF and OF were 5985.20 and 5632.99 kg CO2e·hm−2, which reduced by 5.98% and 11.51% compared with TR, the carbon footprints per unit profit decreased by 45.10% and 45.87%, and the carbon footprints per unit nutrient density decreased by 14.63% and 12.17%, respectively. GF and OF increased the net ecosystem economic benefits by above 50%, with 71.77% in GF. Compared with TR, the production of GF had no significant difference, while that of OF decreased by 16.73%. The CH4 emission of GF and OF increased by 58.13% and 131.18%, and the N2O emission decreased by 41.06% and 63.12% respectively. GF and OF had higher global warming potential and greenhouse gas emission intensity, among which the effect of OF was more significant. In GF and OF, the input of organic materials such as milk vetch, rapeseed cake and organic fertilizer showed net carbon fixation effect. The carbon footprint composition and sensitivity analysis showed that greenhouse gas emission (57.07%) and fertilizer application (32.88%) accounted for the highest carbon footprint composition of TR. The carbon emission and fixation of OF were higher than those of GF, and the CH4 emission and use of nylon protective net contributed the most to GF and OF. Uncertainty analysis showed that the carbon footprints per unit area of GF and OF were 5907.29 and 5647.25 kg CO2e·hm−2, respectively, which was lower than that of TR, and the coefficient of variation was less than 7.5%.

      Conclusion 

      The rice-frog coculture modes (GF and OF) show a more significant carbon fixation and environment friendliness than TR mode, which provides a new scientific basis for green and low carbon development of rice industry in our country under the background of climate change.

    • [1]
      QIAN H, ZHU X, HUANG S, et al. Greenhouse gas emissions and mitigation in rice agriculture[J]. Nature Reviews Earth & Environment, 2023, 4(10): 716-732.
      [2]
      唐志伟, 张俊, 邓艾兴, 等. 我国稻田甲烷排放的时空特征与减排途径[J]. 中国生态农业学报(中英文), 2022, 30(4): 582-591. doi: 10.12357/cjea.20210887
      [3]
      VAN GROENIGEN K, VAN KESSEL C, HUNGATE B. Increased greenhouse-gas intensity of rice production under future atmospheric conditions[J]. Nature Climate Change, 2013, 3: 288-291. doi: 10.1038/nclimate1712
      [4]
      于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023, 573(8): 19-26.
      [5]
      鲁艳红, 廖育林, 聂军, 等. 紫云英利用下有机稻—蛙生产模式及其效应比较[J]. 湖南农业科学, 2017(8): 11-14.
      [6]
      谢洪科, 邹朝晖, 刘功朋, 等. 不同蛙类及其密度对水稻性状和主要害虫的影响[J]. 江西农业学报, 2014, 26(6): 21-25. doi: 10.3969/j.issn.1001-8581.2014.06.006
      [7]
      周雪芳, 朱晓伟, 陈泽恺, 等. 稻蛙生态种养对土壤微生物及无机磷含量的影响[J]. 核农学报, 2016, 30(5): 971-977. doi: 10.11869/j.issn.100-8551.2016.05.0971
      [8]
      陈慧妍, 沙之敏, 吴富钧, 等. 稻蛙共作对水稻−紫云英轮作系统氨挥发的影响[J]. 中国生态农业学报(中英文), 2021, 29(5): 792-801.
      [9]
      FANG K, DAI W, CHEN H, et al. The effect of integrated rice-frog ecosystem on rice morphological traits and methane emission from paddy fields[J]. Science of the Total Environment, 2021, 783: 147123. doi: 10.1016/j.scitotenv.2021.147123
      [10]
      FANG K, GAO H, SHA Z, et al. Mitigating global warming potential with increase net ecosystem economic budget by integrated rice-frog farming in eastern China[J]. Agriculture, Ecosystems &Environment, 2021, 308: 107235.
      [11]
      罗怀良. 国内农业碳源/汇效应研究: 视角、进展与改进[J]. 生态学报, 2022, 42(9): 3832-3841.
      [12]
      夏龙龙, 颜晓元. 中国粮食作物生命周期生产过程温室气体排放的研究进展及展望[J]. 农业环境科学学报, 2020, 39(4): 665-672. doi: 10.11654/jaes.2020-0109
      [13]
      HOLKA M, KOWALSKA J, JAKUBOWSKA M. Reducing carbon footprint of agriculture: Can organic farming help to mitigate climate change?[J]. Agriculture, 2022, 12(9): 1383. doi: 10.3390/agriculture12091383
      [14]
      蒋榕, 徐强, 李京咏, 等. 稻虾共作模式碳足迹评价的敏感性和不确定性分析[J]. 中国生态农业学报(中英文), 2022, 30(10): 1577-1587. doi: 10.12357/cjea.20220188
      [15]
      LING L, SHUAI Y J, XU Y, et al. Comparing rice production systems in China: Economic output and carbon footprint[J]. Science of the Total Environment, 2021, 791: 147890. doi: 10.1016/j.scitotenv.2021.147890
      [16]
      FENG L, WANG R, WANG R, et al. Life cycle assessment of rice-duck co-culture systems[J]. Ecosystem Health and Sustainability, 2024, 10: 0166. doi: 10.34133/ehs.0166
      [17]
      崔文超, 焦雯珺, 闵庆文. 不同土地经营模式的稻鱼共生系统环境影响评价[J]. 中国生态农业学报(中英文), 2022, 30(4): 630-640. doi: 10.12357/cjea.20210736
      [18]
      钟颖, 沙之敏, 顾麦云, 等. 基于能值分析的稻蛙生态种养模式效益评价[J]. 中国生态农业学报(中英文), 2021, 29(3): 572-580.
      [19]
      FANG K, YI X, DAI W, et al. Effects of integrated rice-frog farming on paddy field greenhouse gas emissions[J]. International Journal of Environmental Research and Public Health, 2019, 16(11): 1930. doi: 10.3390/ijerph16111930
      [20]
      MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2021.
      [21]
      LI B, FAN C H, ZHANG H, et al. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China[J]. Atmospheric Environment, 2015, 100: 10-19. doi: 10.1016/j.atmosenv.2014.10.034
      [22]
      CHEN P, YANG J, JIANG Z, et al. Prediction of future carbon footprint and ecosystem service value of carbon sequestration response to nitrogen fertilizer rates in rice production[J]. Science of the Total Environment, 2020, 735: 139506. doi: 10.1016/j.scitotenv.2020.139506
      [23]
      GONG H, LI J, SUN M, et al. Lowering carbon footprint of wheat-maize cropping system in North China Plain: Through microbial fertilizer application with adaptive tillage[J]. Journal of Cleaner Production, 2020, 268: 122255. doi: 10.1016/j.jclepro.2020.122255
      [24]
      ABDULKAREEM R. 绿肥还田对双季稻系统温室气体排放及其相关土壤微生物的影响[D]. 北京: 中国农业科学院, 2020.
      [25]
      MANTOAM E, ANGNES G, MEKONNEN M, et al. Energy, carbon and water footprints on agricultural machinery[J]. Biosystems Engineering, 2020, 198: 304-322. doi: 10.1016/j.biosystemseng.2020.08.019
      [26]
      U. S. Environmental Protection Agency. Inventory of U. S. greenhouse gas emissions and sinks: 1990-2018[R/OL]. [2024-06-01]. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2018.
      [27]
      中华人民共和国生态环境部. 2018年度减排项目中国区域电网基准线排放因子[R/OL]. (2020-12-29)[2024-06-01]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/t20201229_815384.shtml.
      [28]
      熊荣波, 孟艳, 李屹, 等. 高含固率菜籽饼与牛粪−羊粪混合厌氧发酵产沼气特性[J]. 环境工程学报, 2021, 15(7): 2427-2435. doi: 10.12030/j.cjee.202101074
      [29]
      YUAN J, SHA Z, HASSANI D, et al. Assessing environmental impacts of organic and inorganic fertilizer on daily and seasonal greenhouse gases effluxes in rice field[J]. Atmospheric Environment, 2017, 155: 119-128. doi: 10.1016/j.atmosenv.2017.02.007
      [30]
      陈慧妍. 稻蛙种养模式的氨挥发特征[D]. 上海: 上海交通大学, 2021.
      [31]
      TU Q, MCDONNELL B. Monte Carlo analysis of life cycle energy consumption and greenhouse gas (GHG) emission for biodiesel production from trap grease[J]. Journal of Cleaner Production, 2016, 112: 2674-2683. doi: 10.1016/j.jclepro.2015.10.028
      [32]
      任科宇, 徐明岗, 张露, 等. 我国不同区域粮食作物产量对有机肥施用的响应差异[J]. 农业资源与环境学报, 2021, 38(1): 143-150.
      [33]
      YUAN J, YUAN Y, ZHU Y, et al. Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil[J]. Science of the Total Environment, 2018, 627: 770-781. doi: 10.1016/j.scitotenv.2018.01.233
      [34]
      方凯凯. 稻蛙种养对稻田甲烷排放的影响及其机理研究[D]. 上海: 上海交通大学, 2021.
      [35]
      XIA L, LAM S, YAN X, et al. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance?[J]. Environmental Science & Technology, 2017, 51(13): 7450-7457.
      [36]
      WANG C, SHI X, QI Z, et al. How does rice-animal co-culture system affect rice yield and greenhouse gas? A meta-analysis[J]. Plant and Soil, 2023, 493(1): 325-340.
      [37]
      KONG D, ZHANG X, YU Q, et al. Mitigation of N2O emissions in water-saving paddy fields: Evaluating organic fertilizer substitution and microbial mechanisms[J]. Journal of Integrative Agriculture, 2024, 23(9): 3159-3173. doi: 10.1016/j.jia.2024.03.047
      [38]
      DAS S, WANG W, REEVES S, et al. Non-target impacts of pesticides on soil N transformations, abundances of nitrifying and denitrifying genes, and nitrous oxide emissions[J]. Science of the Total Environment, 2022, 844: 157043. doi: 10.1016/j.scitotenv.2022.157043
      [39]
      LIN J, HU Y, CUI S, et al. Carbon footprints of food production in China (1979—2009)[J]. Journal of Cleaner Production, 2015, 90: 97-103. doi: 10.1016/j.jclepro.2014.11.072
      [40]
      李冬雪, 宋星陈, 熊玉唐, 等. 西南山区稻蛙复合种养的研究与实践[J]. 农学学报, 2018, 8(12): 6-12. doi: 10.11923/j.issn.2095-4050.cjas17100006
      [41]
      HORRILLO A, GASPAR P, ESCRIBANO M. Organic farming as a strategy to reduce carbon footprint in dehesa agroecosystems: A case study comparing different livestock products[J]. Animals, 2020, 10(1): 162. doi: 10.3390/ani10010162
      [42]
      TIAN K, ZHAO Y, XU X, et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2015, 204: 40-50.
      [43]
      KAMRAN M, HUANG L, NIE J, et al. Effect of reduced mineral fertilization (NPK) combined with green manure on aggregate stability and soil organic carbon fractions in a fluvo-aquic paddy soil[J]. Soil and Tillage Research, 2021, 211: 105005. doi: 10.1016/j.still.2021.105005
      [44]
      曹黎明, 李茂柏, 王新其, 等. 基于生命周期评价的上海市水稻生产的碳足迹[J]. 生态学报, 2014, 34(2): 491-499.
      [45]
      陈舜, 逯非, 王效科. 中国氮磷钾肥制造温室气体排放系数的估算[J]. 生态学报, 2015, 35(19): 6371-6383.
    • Related Articles

      [1]WANG Ting, WANG Wei, XU Huan, YIN Shibin, SUN Minhua, JIANG Xinyue, XU Jing, WANG Zhaoxiong. Effects of duck Tembutsu virus E protein and its domains of I, II, III on DEF cell cycle and apoptosis[J]. Journal of South China Agricultural University, 2023, 44(2): 205-211. DOI: 10.7671/j.issn.1001-411X.202204018
      [2]MA Peng, YANG Zhiyuan, LI Na, LI Yu, LÜ Xu, SUN Yongjian, MA Jun. Effects of nitrogen fertilizer application in rape season and nitrogen fertilizer management in rice season on photosynthetic productvity and yield of hybrid japonica rice under rape-rice rotation mode[J]. Journal of South China Agricultural University, 2020, 41(3): 23-30. DOI: 10.7671/j.issn.1001-411X.201908017
      [3]GUO Wenbing, ZHAO Fencheng, ZHONG Suiying, DENG Leping, AN Zhiqiang, RONG Renli, LI Zhen, LI Yiliang, WU Huishan. Growth response of Pinus elliottii open pollinated families to mid-rotation fertilization[J]. Journal of South China Agricultural University, 2017, 38(1): 90-95. DOI: 10.7671/j.issn.1001-411X.2017.01.015
      [5]Chen Shaorong 1 Gao Zhenzhong 1 Zhan Xiaoping 2. EXPERIMENT ON SHORTENING OF THE HOT-PRESS CYCLE FOR THICK PLYWOOD[J]. Journal of South China Agricultural University, 1996, (3): 105-108.
      [6]Zhen Xuening. STUDY ON DETERMING THE FOREST LAND PRICE WITH METHOD OF RETURNING LAND RENT TO CAIPITALITY[J]. Journal of South China Agricultural University, 1995, (4): 96-100.
      [9]Fu Weilong Chen Lujiang Xian Debiao. VARIATION OF THE PLASMA "LUTEINIZING HORMONE" AND PROGESTERONE CONCENTRATION DURING THE OVULATORY CYCLE AND BROODY PERIOD IN HENS[J]. Journal of South China Agricultural University, 1991, (Z1).

    Catalog

      Article views (794) PDF downloads (22) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return