• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
PANG Yugong, ZHANG Menghao, JIANG Min, et al. Spatial heterogeneity of physicochemical property and microbial characteristic and comprehensive quality assessment of farmland soils in Gaoyao District, Zhaoqing City, Guangdong Province[J]. Journal of South China Agricultural University, 2025, 46(2): 151-163. DOI: 10.7671/j.issn.1001-411X.202403026
Citation: PANG Yugong, ZHANG Menghao, JIANG Min, et al. Spatial heterogeneity of physicochemical property and microbial characteristic and comprehensive quality assessment of farmland soils in Gaoyao District, Zhaoqing City, Guangdong Province[J]. Journal of South China Agricultural University, 2025, 46(2): 151-163. DOI: 10.7671/j.issn.1001-411X.202403026

Spatial heterogeneity of physicochemical property and microbial characteristic and comprehensive quality assessment of farmland soils in Gaoyao District, Zhaoqing City, Guangdong Province

More Information
  • Received Date: March 20, 2024
  • Available Online: January 07, 2025
  • Published Date: January 22, 2025
  • Objective 

    To examine the spatial heterogeneity of soil physicochemical property and microbial characteristic at the county scale and their application in soil comprehensive quality assessment, and offer a theoretical foundation for sustainable use of cultivated land.

    Method 

    Surface soil samples of farmland from 47 monitoring units in Gaoyao District, Zhaoqing City, Gunagdong Province were collected. The spatial heterogeneity of soil physicochemical properties such as pH, the contents of clay, organic matter, total nitrogen, alkali-hydrolyzed nitrogen and total phosphorus, as well as soil microbial characteristics including soil respiration, mircrobial biomass, and fungi biomass/bacteria biomass were analyzed combining geostatistics and ArcGIS-related techniques. By employing principal component analysis, correlation analysis and general indicator of soil quality (GISQ) method, we elucidated the influence of different factors on the comprehensive quality of farmland.

    Result 

    The nugget coefficients of soil pH, as well as clay, organic matter, dissolved organic carbon, total nitrogen, alkali-hydrolyzed nitrogen, total phosphorus contents ranged from 25% to 75%, indicating moderate spatial autocorrelation, and was affected by both structural and random factors. Among the soil microbial characteristic indicators, the nugget coefficient of soil respiration was 29.4%, indicating moderate spatial autocorrelation, but the nugget coefficients of the total soil microbial biomass, as well as fungi, actinomycetes, bacteria biomass were all greater than 75%, indicating weak spatial autocorrelation and poor spatial structure, and influenced by random factors such as human activities. Soil microorganisms were the primary driving factors of soil quality differentiation of farmland in Gaoyao District, especially the total soil mricrobial biomass, as well as bacterial, fungi, actinomycete biomass. Physicochemical properties such as soil organic matter, total and alkali-hydrolyzed nitrogen contents also had considerable impact on farmland soil quality. Additionally, organic matter, total and alkali-hydrolyzed nitrogen contents were significantly positively correlated (P<0.05). The soil quality of farmland in Gaoyao District was generally in a good level, the spatial pattern was presented as northern hilly area > eastern plain area > central plain area > southern hilly area.

    Conclusion 

    At the county scale, the spatial structure of soil physicochemical properties is relatively stable, and soil respiration is a suitable indicator for analyzing microbial spatial variability. Soil microbial biomass and structure exhibit significant spatial heterogeneity at the county scale. The combined application of soil physicochemical property and microbial characteristic indicators in soil quality evaluation can more comprehensively reflect the changes in the farmland quality.

  • [1]
    沈仁芳, 陈美军, 孔祥斌, 等. 耕地质量的概念和评价与管理对策[J]. 土壤学报, 2012, 49(6): 1210-1217.
    [2]
    刘占锋, 傅伯杰, 刘国华, 等. 土壤质量与土壤质量指标及其评价[J]. 生态学报, 2006, 26(3): 901-913.
    [3]
    HOZZEIN W N, ABUELSOUD W, WADAAN M A, et al. Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals[J]. Science of the Total Environment, 2019, 651: 2787-2798. doi: 10.1016/j.scitotenv.2018.10.048
    [4]
    林芬芳. 不同尺度土壤质量空间变异机理、评价及其应用研究[D]. 杭州: 浙江大学, 2009.
    [5]
    KARLEN D L, VEUM K S, SUDDUTH K A, et al. Soil health assessment: Past accomplishments, current activities, and future opportunities[J]. Soil and Tillage Research, 2019, 195: 104365. doi: 10.1016/j.still.2019.104365
    [6]
    BÜNEMANN E K, BONGIORNO G, BAI Z, et al. Soil quality: A critical review[J]. Soil Biology and Biochemistry, 2018, 120: 105-125. doi: 10.1016/j.soilbio.2018.01.030
    [7]
    ZHANG J, LI B, GAO W, et al. Bacteria not fungi drive soil chemical quality index in banana plantations with increasing years of organic fertilizer application[J]. Journal of the Science of Food and Agriculture, 2023, 103(2): 560-568. doi: 10.1002/jsfa.12167
    [8]
    LI J, XIN Z, YAN J, et al. Physicochemical and microbiological assessment of soil quality on a chronosequence of a mine reclamation site[J]. European Journal of Soil Science, 2018, 69(6): 1056-1067. doi: 10.1111/ejss.12714
    [9]
    SCHLOTER M, NANNIPIERI P, SØRENSEN S J, et al. Microbial indicators for soil quality[J]. Biology and Fertility of Soils, 2018, 54(1): 1-10. doi: 10.1007/s00374-017-1248-3
    [10]
    PETERSEN D G, BLAZEWICZ S J, FIRESTONE M, et al. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska[J]. Environmental Microbiology, 2012, 14(4): 993-1008. doi: 10.1111/j.1462-2920.2011.02679.x
    [11]
    MOORE-KUCERA J, DICK R P. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence[J]. Microbial Ecology, 2008, 55(3): 500-511. doi: 10.1007/s00248-007-9295-1
    [12]
    PUGLISI E, NICELLI M, CAPRI E, et al. A soil alteration index based on phospholipid fatty acids[J]. Chemosphere, 2005, 61(11): 1548-1557. doi: 10.1016/j.chemosphere.2005.04.106
    [13]
    COLVAN S R, SYERS J K, O’DONNELL A G. Effect of long-term fertiliser use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland[J]. Biology and Fertility of Soils, 2001, 34(4): 258-263. doi: 10.1007/s003740100411
    [14]
    苏松锦, 刘金福, 何中声, 等. 格氏栲天然林土壤养分空间异质性[J]. 生态学报, 2012, 32(18): 5673-5682.
    [15]
    FIERER N, JACKSON R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626-631.
    [16]
    CHU H, GAO G F, MA Y, et al. Soil microbial biogeography in a changing world: Recent advances and future perspectives[J]. mSystems, 2020, 5(2): e00803-19.
    [17]
    BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717): 233-237. doi: 10.1038/s41586-018-0386-6
    [18]
    广东省土壤普查办公室. 广东土壤[M]. 北京: 科学出版社, 1993: 72-132.
    [19]
    中华人民共和国自然资源部. 第三次全国国土调查技术规程: TD/T 1055—2019[S]. 北京: 中国标准出版社, 2019: 11.
    [20]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 农用地质量分等规程: GB/T 28407—2012[S]. 北京: 中国标准出版社, 2012: 142-149.
    [21]
    周羽佳, 朱大明. 基于ArcGIS的耕地坡度等级分析[J]. 软件, 2018, 39(11): 207-211. doi: 10.3969/j.issn.1003-6970.2018.11.043
    [22]
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 30-84.
    [23]
    尚白军, 郑博文, 周智彬, 等. 克拉玛依市玛依湖区土壤有机质空间异质性分析[J]. 华南农业大学学报, 2021, 42(1): 72-81.
    [24]
    渠悦, 马涛, 胡月明, 等. 从化区农田耕层土壤有效硅空间分布及影响因素[J]. 农业资源与环境学报, 2021, 38(6): 989-998.
    [25]
    VELASQUEZ E, LAVELLE P, ANDRADE M. GISQ, a multifunctional indicator of soil quality[J]. Soil Biology and Biochemistry, 2007, 39(12): 3066-3080. doi: 10.1016/j.soilbio.2007.06.013
    [26]
    SCHLOEDER C A, ZIMMERMAN N E, JACOBS M J. Comparison of methods for interpolating soil properties using limited data[J]. Soil Science Society of America Journal, 2001, 65(2): 470-479. doi: 10.2136/sssaj2001.652470x
    [27]
    CAMBARDELLA C A, MOORMAN T B, NOVAK J M, et al. Field-scale variability of soil properties in central Iowa soils[J]. Soil Science Society of America Journal, 1994, 58(5): 1501-1511. doi: 10.2136/sssaj1994.03615995005800050033x
    [28]
    JIANG Y J, LI L L, WU Y X, et al. Temporal-spatial variability of soil fertility in Karst Region: A case study of Xiaojiang watershed Yunnan[J]. Environmental Geology, 2008, 55(4): 875-887. doi: 10.1007/s00254-007-1039-5
    [29]
    陈桂香, 高灯州, 曾从盛, 等. 福州市农田土壤养分空间变异特征[J]. 地球信息科学学报, 2017, 19(2): 216-224.
    [30]
    宋莎, 李廷轩, 王永东, 等. 县域农田土壤有机质空间变异及其影响因素分析[J]. 土壤, 2011, 43(1): 44-49.
    [31]
    杨树明, 余小芬, 邹炳礼, 等. 曲靖植烟土壤pH和主要养分空间变异特征及其影响因素[J]. 土壤, 2021, 53(6): 1299-1308.
    [32]
    汪涛, 杨元合, 马文红. 中国土壤磷库的大小、分布及其影响因素[J]. 北京大学学报(自然科学版), 2008, 44(6): 945-952.
    [33]
    邵方丽, 余新晓, 杨志坚, 等. 北京山区典型森林土壤的养分空间变异与环境因子的关系[J]. 应用基础与工程科学学报, 2012, 20(4): 581-591.
    [34]
    王慧颖. 长期不同施肥下我国典型农田土壤细菌和真菌群落的特征[D]. 北京: 中国农业科学院, 2018.
    [35]
    CHU H Y, LIN X G, FUJII T, et al. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management[J]. Soil Biology and Biochemistry, 2007, 39(11): 2971-2976.
    [36]
    PARTEY S T, PREZIOSI R F, ROBSON G D. Improving maize residue use in soil fertility restoration by mixing with residues of low C-to-N ratio: Effects on C and N mineralization and soil microbial biomass[J]. Journal of Soil Science and Plant Nutrition, 2014, 14(3): 518-531.
    [37]
    FENG Y, MOTTA A C, REEVES D W, et al. Soil microbial communities under conventional-till and no-till continuous cotton systems[J]. Soil Biology and Biochemistry, 2003, 35(12): 1693-1703. doi: 10.1016/j.soilbio.2003.08.016
    [38]
    褚海燕, 刘满强, 韦中, 等. 保持土壤生命力, 保护土壤生物多样性[J]. 科学, 2020, 72(6): 38-42.
    [39]
    WEI M, HU G Q, WANG H, et al. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China[J]. European Journal of Soil Biology, 2017, 82: 27-34. doi: 10.1016/j.ejsobi.2017.08.002
    [40]
    BAILEY V L, SMITH J L, BOLTON H, et al. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration[J]. Soil Biology and Biochemistry, 2002, 34(7): 997-1007. doi: 10.1016/S0038-0717(02)00033-0
    [41]
    HOLLAND E A, COLEMAN D C. Litter placement effects on microbial and organic matter dynamics in an agroecosystem[J]. Ecology, 1987, 68(2): 425-433. doi: 10.2307/1939274
    [42]
    MEYER K M, MEMIAGHE H, KORTE L, et al. Why do microbes exhibit weak biogeographic patterns?[J]. ISME Journal, 2018, 12(6): 1404-1413. doi: 10.1038/s41396-018-0103-3
    [43]
    HE Z L, YANG X E, BALIGAR V C, et al. Microbiological and biochemical indexing systems for assessing quality of acid soils[M]//Advances in agronomy. Amsterdam: Elsevier, 2003: 89-138.
    [44]
    PHILIPPOT L, CHENU C, KAPPLER A, et al. The interplay between microbial communities and soil properties[J]. Nature Reviews Microbiology, 2023, 22(4): 226-239.
    [45]
    SUMFLETH K, DUTTMANN R. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators[J]. Ecological Indicators, 2008, 8(5): 485-501. doi: 10.1016/j.ecolind.2007.05.005
    [46]
    包耀贤. 黄土高原坝地和梯田土壤质量特征及评价[D]. 杨凌: 西北农林科技大学, 2008.
    [47]
    高旭梅. 长期连作棉田土壤微生物多样性及对耕作措施的响应[D]. 石河子: 石河子大学, 2010.

Catalog

    Article views (83) PDF downloads (53) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return