• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LU Jianqiang, LIN Jiahan, HUANG Zhongqiang, et al. Identification of citrus fruit infected with Huanglongbing based on Mixup algorithm and convolutional neural network[J]. Journal of South China Agricultural University, 2021, 42(3): 94-101. DOI: 10.7671/j.issn.1001-411X.202008041
Citation: LU Jianqiang, LIN Jiahan, HUANG Zhongqiang, et al. Identification of citrus fruit infected with Huanglongbing based on Mixup algorithm and convolutional neural network[J]. Journal of South China Agricultural University, 2021, 42(3): 94-101. DOI: 10.7671/j.issn.1001-411X.202008041

Identification of citrus fruit infected with Huanglongbing based on Mixup algorithm and convolutional neural network

More Information
  • Received Date: August 29, 2020
  • Available Online: May 17, 2023
  • Objective 

    The traditional image recognition method relies on manual design features, is time-consuming and labor-intensive, has large number of network model parameter and has low recognition accuracy rate. The goal was to solve these problems in traditional method for identifying citrus fruit infected with Huanglongbing.

    Method 

    Firstly, we collected the images of citrus fruit with Huanglongbing, and performed data enhancement modes such as flip, rotation, affine, and Gaussian disturbance. Further, we used the Mixup algorithm to establish a linear relationship between samples to enhance the robustness of the model for identifying data samples. Then, we transfered the prior knowledge on the ImageNet data set of Xception network, and proposed a citrus Huanglongbing fruit recognition model of X-ResNeXt model based on Mixup algorithm and convolutional neural network. Finally, the momentum gradient descent optimization method was used to reduce the impact of shocks and effectively accelerate the convergence of the model to the local optimum.

    Result 

    The accuracy rate of the X-ResNeXt model trained on the data set after data enhancement was 91.38%. After optimization with transfer learning, the training time reduced by 432 s, and the accuracy rate of the model increased to 91.97%. Combined with the enhancement of Mixup mixed data for further training, the accuracy rate of the model improved to 93.74%. Finally, the momentum gradient descent method was used to optimize the model convergence, and the final model accuracy rate reached 94.29%, which was 3.98% and 1.51% higher than Inception-V3 and Xception networks, respectively.

    Conclusion 

    In the case of a small amount of data, reducing the complexity of the model and transfering existing prior knowledge will help to improve the performance of the model. The Mixup mixed data enhancement method is beneficial to improve the adaptability of the model to identify image samples of citrus fruit with Huanglongbing and improve model performance. The X-ResNeXt model is superior to the classic recognition model in terms of accuracy rate and recall rate, and can provide references for the high-precision, rapid and non-destructive identification of citrus Huanglongbing.

  • [1]
    YAN X J, YUAN H Z, ZHOU X X. Control efficacy of different pesticide formulations and fan-nozzle model on wheat aphids by UAVs[J]. International Journal of Precision Agricultural Aviation, 2020, 3(2): 35-39.
    [2]
    范国成, 刘波, 吴如健, 等. 中国柑橘黄龙病研究30年[J]. 福建农业学报, 2009, 24(2): 183-190. doi: 10.3969/j.issn.1008-0384.2009.02.019
    [3]
    谢钟琛, 李健, 施清, 等. 福建省柑橘黄龙病危害及其流行规律研究[J]. 中国农业科学, 2009, 42(11): 3888-3897. doi: 10.3864/j.issn.0578-1752.2009.11.016
    [4]
    邓小玲, 郑建宝, 梅慧兰, 等. 基于高光谱成像技术的柑橘黄龙病病情诊断及分类[J]. 西北农林科技大学学报(自然科学版), 2013, 41(7): 99-105.
    [5]
    邓小玲, 林亮生, 兰玉彬. 基于调制荧光检测技术的柑橘黄龙病诊断[J]. 华南农业大学学报, 2016, 37(2): 113-116. doi: 10.7671/j.issn.1001-411X.2016.02.018
    [6]
    马淏, 吉海彦, WON S L. 基于高光谱成像技术应用光谱及纹理特征识别柑橘黄龙病[J]. 光谱学与光谱分析, 2016, 36(7): 2344-2350.
    [7]
    王克健. 柑橘黄龙病光谱检测与柑橘木虱UAV防控技术探索[D]. 重庆: 西南大学, 2018.
    [8]
    肖怀春. 基于高光谱成像技术的柑橘黄龙病诊断方法研究[D]. 南昌: 华东交通大学, 2019.
    [9]
    戴泽翰, 郑正, 黄莉舒, 等. 基于深度卷积神经网络的柑橘黄龙病症状识别[J]. 华南农业大学学报, 2020, 41(4): 111-119. doi: 10.7671/j.issn.1001-411X.201909031
    [10]
    陈波, 姚林建. 光谱检测技术在柑橘黄龙病诊断中的研究进展[J]. 赣南师范大学学报, 2018, 39(6): 69-72.
    [11]
    黄志强, 李军. 基于卷积神经网络的图像识别研究综述[J]. 汽车工程师, 2020(10): 11-13. doi: 10.3969/j.issn.1674-6546.2020.10.003
    [12]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [13]
    郑二功, 田迎芳, 陈涛. 基于深度学习的无人机影像玉米倒伏区域提取[J]. 河南农业科学, 2018, 47(8): 155-160.
    [14]
    卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17.
    [15]
    ZHANG H, CISSE M, DAUPHIN Y N, et al. Mixup: Beyond empirical risk minimization[EB/OL]. [2020-06-15]. https://arxiv.org/pdf/1710.09412.pdf.
    [16]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
    [17]
    XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5987-5995.
    [18]
    CHOLLET F. Xception: Deep learning with depth wise separable convolutions[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1800-1807.
    [19]
    DONAHUE J, JIA Y, VINYALS O, et al. DeCAF: A deep convolutional activation feature for generic visual recognition[J]. Computer Science, 2013. arXiv: 1310.1531.
    [20]
    ALEX K, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communication of the ACM, 2012: 84-90.
    [21]
    SUTSKEVER I, MARTENS G, DAHI G, et al. On the importance of initialization and momentum in deep learning[EB/OL]. [2020-06-15]. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6C87CA259F724D8BDDFA5E3B2C0F10F2?doi=10.1.1.352.8324&rep=rep1&type=pdf.
    [22]
    胡子昂, 王卫星, 陆健强, 等. 视频图像去雾霾技术研究综述与展望[J]. 电子技术与软件工程, 2015(22): 94-95.
    [23]
    薛月菊, 黄宁, 涂淑琴, 等. 未成熟芒果的改进YOLOv2识别方法[J]. 农业工程学报, 2018, 34(7): 173-179. doi: 10.11975/j.issn.1002-6819.2018.07.022
  • Cited by

    Periodical cited type(23)

    1. 池美香,陈韶萍,黄婷,陈世雄,梁勇,邱荣洲. 柑橘黄龙病田间症状识别图像数据集. 中国科学数据(中英文网络版). 2025(01): 52-61 .
    2. 骆润玫,殷惠莉,刘伟康,胡凯,廖飞,刘泽乾,曹亚芃,李强,王卫星. 基于YOLOv5-C的广佛手病虫害识别. 华南农业大学学报. 2023(01): 151-160 . 本站查看
    3. 殷献博,邓小玲,兰玉彬,陈欣. 基于改进YOLOX-Nano算法的柑橘梢期长势智能识别. 华南农业大学学报. 2023(01): 142-150 . 本站查看
    4. 梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 .
    5. 汪莹,刘静远,吕文刚,龙海,刘宵宵,余道坚,方毅,郑铭森,张浩,陈冬美,高瑞芳. 基于卷积神经网络的昆虫和杂草标本智能全维识别方法初探. 植物检疫. 2023(02): 40-45 .
    6. 王慧,李康顺,蔡铁,王文祥,董纯铿. 基于约束性多目标优化算法的柑橘黄龙病识别算法. 江苏农业科学. 2023(06): 159-167 .
    7. 马军磊,栗伟周,张赞. 基于PP-YOLO的电子焊接实训装置安全报警系统. 许昌学院学报. 2023(02): 116-121 .
    8. 李志臣,凌秀军,李鸿秋,李志军. 基于改进ShuffleNet的板栗分级方法. 山东农业大学学报(自然科学版). 2023(02): 299-307 .
    9. 杨雪. 基于DCGAN的数据增强方法. 江苏通信. 2023(02): 97-100+107 .
    10. 边坤,梁慧. 基于机器学习的图案分类研究进展. 图学学报. 2023(03): 415-426 .
    11. 胡凯,骆润玫,刘泽乾,曹亚芃,廖飞,王卫星,李强,孙道宗. 基于改进SSD的广佛手病虫害检测方法. 南京农业大学学报. 2023(04): 813-821 .
    12. 王治兵,吴丽丽. 基于改进的MobilenetV3苹果叶片病害图像识别技术. 软件工程. 2023(08): 20-25 .
    13. 刘拥民,胡魁,聂佳伟,谢铁强. 基于MSDB-ResNet的水稻病虫害识别. 华南农业大学学报. 2023(06): 978-985 . 本站查看
    14. 赵法川,徐晓辉,宋涛,郝淼淼,汪曙,朱伟龙. 融合多头注意力的轻量级作物病虫害识别. 华南农业大学学报. 2023(06): 986-994 . 本站查看
    15. 李志臣,凌秀军,李鸿秋,李志军. 基于改进EfficientNet的板栗分级方法. 中国农机化学报. 2023(12): 180-185 .
    16. 徐兢成,王丽华. 基于AlexNet网络的交通标志识别方法. 无线电工程. 2022(03): 470-475 .
    17. 周巧黎,马丽,曹丽英,于合龙. 基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别. 智慧农业(中英文). 2022(01): 47-56 .
    18. 胡哲,徐承志,雷光波,徐丽. 基于改进YOLOv5的X射线图像铸件缺陷实时检测. 激光杂志. 2022(05): 54-59 .
    19. 叶名炀,张杰强. 基于轻量化网络MobileNetV2的玉米病害识别研究. 现代计算机. 2022(11): 46-50 .
    20. 钟友闻,车文刚,高盛祥. 轻型多尺度黑色素瘤目标检测网络模型的建立:基于注意力机制调控. 南方医科大学学报. 2022(11): 1662-1671 .
    21. 滕明洪,谭立新. 基于EfficientNetV2和迁移学习的葡萄病害识别研究. 软件. 2022(11): 43-49 .
    22. 陆健强,梁效,余超然,兰玉彬,邱洪斌,黄捷伟,尹梓濠,陈慧洁,郑胜杰. 基于坐标注意力机制与高效边界框回归损失的线虫快速识别. 农业工程学报. 2022(22): 123-132 .
    23. 卢慧林,陈大嵩,陈逢浩,叶静文,欧阳革成. 基于纳米孔测序技术的柑橘黄龙病检测方法建立. 环境昆虫学报. 2021(06): 1596-1600 .

    Other cited types(14)

Catalog

    Article views (1560) PDF downloads (1211) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return