• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHANG Yali, MO Zhenjie, TIAN Haoxin, et al. Path planning algorithm of agricultural robot based on improved APF-FMT*[J]. Journal of South China Agricultural University, 2024, 45(3): 408-415. DOI: 10.7671/j.issn.1001-411X.202305030
Citation: ZHANG Yali, MO Zhenjie, TIAN Haoxin, et al. Path planning algorithm of agricultural robot based on improved APF-FMT*[J]. Journal of South China Agricultural University, 2024, 45(3): 408-415. DOI: 10.7671/j.issn.1001-411X.202305030

Path planning algorithm of agricultural robot based on improved APF-FMT*

More Information
  • Received Date: May 24, 2023
  • Available Online: February 25, 2024
  • Published Date: March 10, 2024
  • Objective 

    The study is aimed to address the issue of lengthy global path planning of agricultural robot in complex agricultural environment and the path solution is not optimal.

    Method 

    A fast marching tree algorithm based on an improved artificial potential field method (APF-FMT*) was proposed. Firstly, relative distance was introduced in the gravitational potential field, adjusting the strength of attraction based on the distance from the target point. This overcomed the issue of excessive attraction force in the artificial potential field method when the distance to the target point was too far. The FMT* algorithm was combined with the improved artificial potential field method, and a third order B-spline curve was used to smooth the path. Finally, three agricultural working maps were created for simulation experiments.

    Result 

    APF-FMT* was compared with FMT*, RRT*, and Informed-RRT* algorithms. The simulation results demonstrated that in maps Map1 and Map2, APF-FMT* consistently found good solutions quickly, and the path solutions were improved with an increasing number of samples. The search time reduced by over 45% compared with the other three algorithms. In Map3 with narrow channels, the search times of APF-FMT* and FMT* reduced by more than 75% compared with RRT* and Informed RRT*, and better solutions were obtained.

    Conclusion 

    The proposed APF-FMT* algorithm based on the improved artificial potential field method not only overcomes the issue of redundant exploration in the FMT* algorithm, but also effectively solves the problem of unreachable target points in the artificial potential field method. This algorithm improves the efficiency and safety of path planning for agricultural robots.

  • [1]
    孙叶丰. 农业机器人发展现状及展望[J]. 现代农业研究, 2022, 29(3): 92-94. doi: 10.3969/j.issn.1674-0653.2022.03.030
    [2]
    艾尔肯·亥木都拉, 穆占海, 郑威强. 采用多策略改进黑猩猩算法的农业机器人路径规划[J]. 西安交通大学学报, 2023, 57(8): 161-171. doi: 10.7652/xjtuxb202308001
    [3]
    陆宇豪, 刘义亭, 郁汉琪, 等. 基于改进BIT算法的农业机器人路径优化研究[J]. 仪器仪表用户, 2022, 29(11): 1-6.
    [4]
    石志刚, 梅松, 邵毅帆, 等. 基于人工势场法的移动机器人路径规划研究现状与展望[J]. 中国农机化学报, 2021, 42(12): 182-188.
    [5]
    KAZEMI M, GUPTA K K, MEHRANDEZH M, et al. Randomized kinodynamic planning for robust visual servoing[J]. IEEE Transactions on Robotics: A publication of the IEEE Robotics and Automation Society, 2013, 29(5): 1197-1211.
    [6]
    KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580. doi: 10.1109/70.508439
    [7]
    KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning with deterministic µ-calculus specifications[C]//2012 American Control Conference (ACC). Montreal, QC, Canada: IEEE, 2012: 735-742.
    [8]
    RICKERT M, SIEVERLING A, BROCK O. Balancing exploration and exploitation in sampling-based motion planning[J]. IEEE Transactions on Robotics, 2014, 30(6): 1305-1317. doi: 10.1109/TRO.2014.2340191
    [9]
    GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Chicago, IL, USA: IEEE, 2014: 2997-3004.
    [10]
    JANSON L, SCHMERLING E, CLARK A, et al. Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions[J]. The International Journal of Robotics Research, 2015, 34(7): 883-921. doi: 10.1177/0278364915577958
    [11]
    STAREK J A, GOMEZ J V, SCHMERLING E, et al. An asymptotically-optimal sampling-based algorithm for bi-directional motion planning[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Hamburg, Germany: IEEE, 2015: 2072-2078.
    [12]
    XU J, SONG K, ZHANG D, et al. Informed anytime fast marching tree for asymptotically-optimal motion planning[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 5068-5077. doi: 10.1109/TIE.2020.2992978
    [13]
    WU Z, CHEN Y, LIANG J, et al. ST-FMT*: A fast optimal global motion planning for mobile robot[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3854-3864. doi: 10.1109/TIE.2021.3075852
    [14]
    ICHTER B, SCHMERLING E, PAVONE M. Group marching tree: Sampling-based approximately optimal motion planning on GPUs[C]//2017 First IEEE International Conference on Robotic Computing(IRC). Taichung, TaiWan: IEEE, 2017: 219-226.
    [15]
    GAO W, TANG Q, YAO J, et al. Heuristic bidirectional fast marching tree for optimal motion planning[C]//2018 3rd Asia-Pacific Conference on Intelligent Robot Systems. Singapore: IEEE, 2018: 71-77.
    [16]
    臧强, 张国林, 靳雨桐, 等. 一种基于动态步长的AAPF-RRT*移动机器人路径规划新算法[J]. 中国科技论文, 2021, 16(11): 1227-1233. doi: 10.3969/j.issn.2095-2783.2021.11.012
    [17]
    KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[C]//1985 IEEE International Conference on Robotics and Automation. St. Louis, MO, USA: IEEE, 1985: 500-505.
    [18]
    GAMMELL J D, BARFOOT T D, SRINIVASA S S. Batch informed trees (BIT*): Informed asymptotically optimal anytime search[J]. The International Journal of Robotics Research, 2020, 39(5): 543-567. doi: 10.1177/0278364919890396
    [19]
    杨琛, 陈继洋, 胡庆松, 等. 基于多目标PSO-ACO融合算法的无人艇路径规划[J]. 华南农业大学学报, 2023, 44(1): 65-73. doi: 10.7671/j.issn.1001-411X.202205005
  • Cited by

    Periodical cited type(6)

    1. 任德港,王东伟,李墨贤,李绪,马振家,董彤彤,常学良,马世宽,于华丽. 苜蓿小区育种气吸式排种器设计与试验. 农机化研究. 2025(01): 39-45 .
    2. 刘海,杜铮,郭翔,李华,马翔远,廖宜涛. 蔬菜种子精量直播技术与装备研究进展. 华中农业大学学报. 2025(01): 225-238 .
    3. 杨文彩,田梓园,潘吴建,赵静,张海东,李贵荣. 蔬菜穴盘育苗播种机清种装置的设计与试验. 华南农业大学学报. 2024(01): 116-126 . 本站查看
    4. 臧英,黄子顺,秦伟,何思禹,钱诚,姜有聪,陶婉琰,张美林,王在满. 气吸式杂交稻单粒排种器研制. 农业工程学报. 2024(06): 181-191 .
    5. 贾桃,谭蓉,赵倩,王利春,郭文忠. 我国设施生菜无土生产装备研究现状及展望. 中国农机化学报. 2022(02): 67-74 .
    6. 梅玉茹,谢方平,王修善,李旭,刘大为. 番茄气吸滚筒式排种器的优化设计与试验. 湖南农业大学学报(自然科学版). 2022(06): 730-736 .

    Other cited types(4)

Catalog

    Article views (1201) PDF downloads (40) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return