• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHANG Yali, MO Zhenjie, TIAN Haoxin, et al. Path planning algorithm of agricultural robot based on improved APF-FMT*[J]. Journal of South China Agricultural University, 2024, 45(3): 408-415. DOI: 10.7671/j.issn.1001-411X.202305030
Citation: ZHANG Yali, MO Zhenjie, TIAN Haoxin, et al. Path planning algorithm of agricultural robot based on improved APF-FMT*[J]. Journal of South China Agricultural University, 2024, 45(3): 408-415. DOI: 10.7671/j.issn.1001-411X.202305030

Path planning algorithm of agricultural robot based on improved APF-FMT*

More Information
  • Received Date: May 24, 2023
  • Available Online: February 25, 2024
  • Published Date: March 10, 2024
  • Objective 

    The study is aimed to address the issue of lengthy global path planning of agricultural robot in complex agricultural environment and the path solution is not optimal.

    Method 

    A fast marching tree algorithm based on an improved artificial potential field method (APF-FMT*) was proposed. Firstly, relative distance was introduced in the gravitational potential field, adjusting the strength of attraction based on the distance from the target point. This overcomed the issue of excessive attraction force in the artificial potential field method when the distance to the target point was too far. The FMT* algorithm was combined with the improved artificial potential field method, and a third order B-spline curve was used to smooth the path. Finally, three agricultural working maps were created for simulation experiments.

    Result 

    APF-FMT* was compared with FMT*, RRT*, and Informed-RRT* algorithms. The simulation results demonstrated that in maps Map1 and Map2, APF-FMT* consistently found good solutions quickly, and the path solutions were improved with an increasing number of samples. The search time reduced by over 45% compared with the other three algorithms. In Map3 with narrow channels, the search times of APF-FMT* and FMT* reduced by more than 75% compared with RRT* and Informed RRT*, and better solutions were obtained.

    Conclusion 

    The proposed APF-FMT* algorithm based on the improved artificial potential field method not only overcomes the issue of redundant exploration in the FMT* algorithm, but also effectively solves the problem of unreachable target points in the artificial potential field method. This algorithm improves the efficiency and safety of path planning for agricultural robots.

  • [1]
    孙叶丰. 农业机器人发展现状及展望[J]. 现代农业研究, 2022, 29(3): 92-94. doi: 10.3969/j.issn.1674-0653.2022.03.030
    [2]
    艾尔肯·亥木都拉, 穆占海, 郑威强. 采用多策略改进黑猩猩算法的农业机器人路径规划[J]. 西安交通大学学报, 2023, 57(8): 161-171. doi: 10.7652/xjtuxb202308001
    [3]
    陆宇豪, 刘义亭, 郁汉琪, 等. 基于改进BIT算法的农业机器人路径优化研究[J]. 仪器仪表用户, 2022, 29(11): 1-6.
    [4]
    石志刚, 梅松, 邵毅帆, 等. 基于人工势场法的移动机器人路径规划研究现状与展望[J]. 中国农机化学报, 2021, 42(12): 182-188.
    [5]
    KAZEMI M, GUPTA K K, MEHRANDEZH M, et al. Randomized kinodynamic planning for robust visual servoing[J]. IEEE Transactions on Robotics: A publication of the IEEE Robotics and Automation Society, 2013, 29(5): 1197-1211.
    [6]
    KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580. doi: 10.1109/70.508439
    [7]
    KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning with deterministic µ-calculus specifications[C]//2012 American Control Conference (ACC). Montreal, QC, Canada: IEEE, 2012: 735-742.
    [8]
    RICKERT M, SIEVERLING A, BROCK O. Balancing exploration and exploitation in sampling-based motion planning[J]. IEEE Transactions on Robotics, 2014, 30(6): 1305-1317. doi: 10.1109/TRO.2014.2340191
    [9]
    GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Chicago, IL, USA: IEEE, 2014: 2997-3004.
    [10]
    JANSON L, SCHMERLING E, CLARK A, et al. Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions[J]. The International Journal of Robotics Research, 2015, 34(7): 883-921. doi: 10.1177/0278364915577958
    [11]
    STAREK J A, GOMEZ J V, SCHMERLING E, et al. An asymptotically-optimal sampling-based algorithm for bi-directional motion planning[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Hamburg, Germany: IEEE, 2015: 2072-2078.
    [12]
    XU J, SONG K, ZHANG D, et al. Informed anytime fast marching tree for asymptotically-optimal motion planning[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 5068-5077. doi: 10.1109/TIE.2020.2992978
    [13]
    WU Z, CHEN Y, LIANG J, et al. ST-FMT*: A fast optimal global motion planning for mobile robot[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3854-3864. doi: 10.1109/TIE.2021.3075852
    [14]
    ICHTER B, SCHMERLING E, PAVONE M. Group marching tree: Sampling-based approximately optimal motion planning on GPUs[C]//2017 First IEEE International Conference on Robotic Computing(IRC). Taichung, TaiWan: IEEE, 2017: 219-226.
    [15]
    GAO W, TANG Q, YAO J, et al. Heuristic bidirectional fast marching tree for optimal motion planning[C]//2018 3rd Asia-Pacific Conference on Intelligent Robot Systems. Singapore: IEEE, 2018: 71-77.
    [16]
    臧强, 张国林, 靳雨桐, 等. 一种基于动态步长的AAPF-RRT*移动机器人路径规划新算法[J]. 中国科技论文, 2021, 16(11): 1227-1233. doi: 10.3969/j.issn.2095-2783.2021.11.012
    [17]
    KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[C]//1985 IEEE International Conference on Robotics and Automation. St. Louis, MO, USA: IEEE, 1985: 500-505.
    [18]
    GAMMELL J D, BARFOOT T D, SRINIVASA S S. Batch informed trees (BIT*): Informed asymptotically optimal anytime search[J]. The International Journal of Robotics Research, 2020, 39(5): 543-567. doi: 10.1177/0278364919890396
    [19]
    杨琛, 陈继洋, 胡庆松, 等. 基于多目标PSO-ACO融合算法的无人艇路径规划[J]. 华南农业大学学报, 2023, 44(1): 65-73. doi: 10.7671/j.issn.1001-411X.202205005
  • Related Articles

    [1]WU Liji, HU Fei. Rainfall characteristics of growth duration of early and late rice in South China[J]. Journal of South China Agricultural University, 2019, 40(1): 1-7. DOI: 10.7671/j.issn.1001-411X.201804034
    [2]ZHOU Duo'en, LIU Dewu, LIAO Yingxin, LIU Guangbin. Study on adaptabilities of Hu sheep and Chuanzhong black goat in Southern China[J]. Journal of South China Agricultural University, 2016, 37(5): 19-23. DOI: 10.7671/j.issn.1001-411X.2016.05.004
    [3]CHENG Yanbo, MA Qibin, MU Yinghui, TAN Zhiyuan, WU Hong, NIAN Hai. Resistance evaluation of soybean varieties to phytophthora root rot in South China[J]. Journal of South China Agricultural University, 2015, 36(4): 69-75. DOI: 10.7671/j.issn.1001-411X.2015.04.013
    [4]ZHAO Yunyun, ZHONG Caixia, FANG Xiaolong, HUANG Yi’an, MA Qibin, NIAN Hai, YANG Cunyi. Genotypic differences of cadmium tolerance among spring-sowing soybean varieties in South China[J]. Journal of South China Agricultural University, 2014, 35(3): 111-113. DOI: 10.7671/j.issn.1001-411X.2014.03.020
    [5]LIU Chuan-guang, ZHOU Xin-qiao, CHEN Da-gang, ZHOU Han-qin, FENG Dao-ji, LI Li-jun, LI Ju-chang, ZHANG Gui-quan, CHEN You-ding. Analysis of Coefficient of Parentage Among Major Commercial Inbred Indica Rice Cultivars in South China[J]. Journal of South China Agricultural University, 2012, 33(3): 277-281. DOI: 10.7671/j.issn.1001-411X.2012.03.002
    [6]ZHANG Yu-ping,ZENG Ling,LU Yong-yue,LIANG Guang-wen. Monitoring of Insecticide Resistance of Bactrocera dorsalis Adults in South China[J]. Journal of South China Agricultural University, 2007, 28(3): 20-23. DOI: 10.7671/j.issn.1001-411X.2007.03.005
    [7]Journal of South China Agricultural University[J]. Journal of South China Agricultural University, 2006, 27(4): F0003-F0003.
    [8]Cloning and Sequencing of HN Gene of NDV WS99 Strain Isolated in South China[J]. Journal of South China Agricultural University, 2001, 22(4): 75-77. DOI: 10.7671/j.issn.1001-411X.2001.04.021
    [9]XIAO Hong-sheng,JI Xian-hua,ZHAO Yu-guang,LUO Fu-he,CHEN Yi-gang. The Application of GPS in South China Forest[J]. Journal of South China Agricultural University, 2000, (2): 5-7. DOI: 10.7671/j.issn.1001-411X.2000.02.002
    [10]Wu Zhimin ,Huang Shaowei ,Li Bingtao ,Luo Fuhe. STUDY ON NUMERICAL TAXONOMY OF ULMACEAE PLANTS FROM SOUTH CHINA[J]. Journal of South China Agricultural University, 1995, (3): 51-55.
  • Cited by

    Periodical cited type(7)

    1. 李旭,孙文松,刘莹,杨正书. 北五味子有效成分含量与土壤因子的相关性分析. 园艺与种苗. 2024(01): 68-71 .
    2. 郭城峰,曲娜,吕丽娟. 防风种子不同部位浸提液对白菜种子发芽及幼苗生长的影响. 种子科技. 2024(09): 39-42 .
    3. 马丙如,崔静轩,王雨懿,刘子君,宁凝,王云贺,杨利民,韩忠明. 防风药材质量的多指标综合评价. 浙江农林大学学报. 2024(04): 715-723 .
    4. 李安辉,吕泽良,韩忠明,韩梅,杨利民. 不同碱性盐处理对防风种子萌发、幼苗生长及其生理特性的影响. 中药材. 2023(08): 1870-1875 .
    5. 郝佳,刘宇航,殷洁,刘晶,田新,韩忠明,王云贺,韩梅,杨利民. 不同磷浓度对土壤理化性质及防风生长和药材品质的影响. 华南农业大学学报. 2022(03): 59-67 . 本站查看
    6. 王浩,秦义杰,钟荣荣,马东来,曾燕,王继永. 基于MaxEnt模型的防风潜在种植区预测. 中国现代中药. 2022(04): 606-610 .
    7. 岳超,徐普,刘柱,施贝,张文婷,王峰. HPLC法同时测定玉屏风口服液中12种成分及质量一致性评价. 中成药. 2022(11): 3434-3439 .

    Other cited types(4)

Catalog

    Article views (1206) PDF downloads (41) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return