Citation: | WU Zishuai, LI Hu, CHEN Chuanhua, et al. Analysis of blast resistance genes and panicle neck blast resistances of conventional indica rice varieties[J]. Journal of South China Agricultural University, 2023, 44(5): 718-724. DOI: 10.7671/j.issn.1001-411X.202305013 |
To indentify the blast resistance genes and resistance effects of conventional indica rice variety resources.
The distribution of 14 blast resistance genes in 121 conventional indica rice varieties were genotyped using PARMS SNP typing technology. Natural identification of panicle neck blast was conducted in the field, and the relationship between genotype and resistance was analyzed.
Most of the tested varieties carried 2−6 blast resistance genes. The detection rates of Pi46 and Pia were 3.3% and 7.4%, respectively. The detection rates of Pi54 and Pi5 were 86.0% and 67.8%, respectively. None of the tested varieties carried Pi9, Pigm, Pik-m, or Pik. Field resistance identification showed the resistances to panicle neck blast of the tested varieties were generally weak, yet the resistances of Guangdong varieties were significantly higher than those of Guangxi varieties. There was no significant correlation between the number of resistance genes and the resistance to panicle neck blast. Pi2 and Pid3 had significant contributions on the resistance to panicle neck blast, with the odds ratios of 5.98 and 7.50, respectively. The combinations of Pi2+Pid3+, Pi2+Pi33+ and Pid3+Pi33+ showed higher resistance to panicle neck blast.
The results of this study provides a theoretical support for the parent selection of pyramiding breeding using rice blast resistance genes in the indica rice regions of Guangdong and Guangxi, and provides scientific references for the rational layout of conventional rice.
[1] |
夏小东, 袁筱萍, 余汉勇, 等. 中国稻种资源初级核心种质对稻瘟病的抗性聚类分析[J]. 华南农业大学学报, 2011, 32(2): 39-43. doi: 10.3969/j.issn.1001-411X.2011.02.009
|
[2] |
何峰, 张浩, 刘金灵, 等. 水稻抗稻瘟病天然免疫机制及抗病育种新策略[J]. 遗传, 2014, 36(8): 756-765.
|
[3] |
张影, 朴日花, 陈莫军, 等. 水稻抗稻瘟病分子机制及分子育种研究进展[J/OL]. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.s.20220711.1634.006.html.
|
[4] |
王小军, 王丽锋. 水稻穗颈瘟发病特征、原因及其对策浅析[J]. 安徽农学通报, 2010, 16(2): 90-91. doi: 10.3969/j.issn.1007-7731.2010.02.049
|
[5] |
刘军化, 黄成志, 蒋静玥, 等. 87 份水稻材料中抗稻瘟病基因的分子检测[J]. 西南农业学报, 2022, 35(9): 2030-2037.
|
[6] |
卢宣君, 苏珍珠, 刘小红, 等. 稻瘟病菌致病机制及绿色防控新策略[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 721-730.
|
[7] |
杨瑰丽, 张瑞祥, 王慧, 等. 利用分子标记辅助选择改良水稻保持系香味和稻瘟病抗性[J]. 华南农业大学学报, 2022, 43(3): 9-17.
|
[8] |
李晓蓉, 苏思荣, 张银霞, 等. Pita、Pib在宁夏及引进水稻种质资源中的分布及与穗颈瘟抗性的关系[J]. 河南农业科学, 2022, 51(10): 25-35.
|
[9] |
李刚, 袁彩勇, 曹奎荣, 等. 544份水稻种质稻瘟病抗性鉴定及抗性基因的分布研究[J]. 中国农业大学学报, 2018, 23(5): 22-28. doi: 10.11841/j.issn.1007-4333.2018.05.003
|
[10] |
朱业宝, 方珊茹, 沈伟峰, 等. 国外引进水稻种质资源的稻瘟病抗性基因检测与评价[J]. 植物遗传资源学报, 2020, 21(2): 418-430. doi: 10.13430/j.cnki.jpgr.20190414003
|
[11] |
王小秋, 杜海波, 陈夕军, 等. 江苏近年育成粳稻新品种/系的稻瘟病抗性基因及穗颈瘟抗性分析[J]. 中国水稻科学, 2020, 34(5): 413-424.
|
[12] |
周坤能, 张彩娟, 夏加发, 等. 长江中下游地区粳稻稻瘟病基因型与苗瘟抗性分析[J]. 核农学报, 2022, 36(10): 1920-1928. doi: 10.11869/j.issn.100-8551.2022.10.1920
|
[13] |
陈晴晴, 杨雪, 张爱芳. 长江中下游区试水稻品种稻瘟病抗性评价及抗性基因检测[J]. 南方农业学报, 2022, 53(1): 21-28. doi: 10.3969/j.issn.2095-1191.2022.01.003
|
[14] |
王晓玲, 吴婷, 唐书升, 等. 82份籼粳稻骨干亲本抗稻瘟病基因的分子检测[J]. 热带作物学报, 2021, 42(5): 1199-1208. doi: 10.3969/j.issn.1000-2561.2021.05.001
|
[15] |
潘争艳, 邱福林, 吕桂兰, 等. 辽宁省粳稻品种稻瘟病抗性基因分析[J]. 中国水稻科学, 2019, 33(3): 241-248. doi: 10.16819/j.1001-7216.2019.8071
|
[16] |
YE S, DHILLON S, KE X, et al. An efficient procedure for genotyping single nucleotide polymorphisms[J]. Nucleic Acids Research, 2001, 29(17): e88. doi: 10.1093/nar/29.17.e88
|
[17] |
中华人民共和国农业部. 水稻品种试验稻瘟病抗性鉴定与评价技术规程: NY/T 2646—2014[S]. 北京: 中国标准出版社, 2014.
|
[18] |
陆展华, 付魏魏, 刘维, 等. 广东省主栽水稻品种稻瘟病主效抗性基因的鉴定及分析[J]. 植物病理学报, 2020, 50(6): 711-722. doi: 10.13926/j.cnki.apps.000505
|
[19] |
INUKAI T, NELSON R J, ZEIGLER R S, et al. Allelism of blast resistance genes in near-isogenic lines of rice[J]. Phytopathology, 1994, 84(11): 1278-1283. doi: 10.1094/Phyto-84-1278
|
[20] |
DENG Y, ZHU X, SHEN Y, et al. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety[J]. Theoretical and Applied Genetics, 2006, 113(4): 705-713. doi: 10.1007/s00122-006-0338-7
|
[21] |
邹德堂, 姜思达, 赵宏伟, 等. 广谱抗性基因Pi9在黑龙江省水稻品种中的分布[J]. 东北农业大学学报, 2016, 47(7): 1-8. doi: 10.3969/j.issn.1005-9369.2016.07.001
|
[22] |
汪文娟, 周继勇, 汪聪颖, 等. 八个抗稻瘟病基因在华南籼型杂交水稻中的分布[J]. 中国水稻科学, 2017, 31(3): 299-306.
|
[23] |
TIAN D G, CHEN Z J, CHEN Z Q, et al. Allele-specific marker-based assessment revealed that the rice blast resistance genes Pi2 and Pi9 have not been widely deployed in Chinese indica rice cultivars[J]. Rice, 2016, 9(1): 19. doi: 10.1186/s12284-016-0091-8
|
[24] |
ZHAI C, LIN F, DONG Z, et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication[J]. New Phytologist, 2011, 189(1): 321-334. doi: 10.1111/j.1469-8137.2010.03462.x
|
[25] |
WANG L, XU X, LIN F, et al. Characterization of rice blast resistance genes in the Pik cluster and fine mapping of the Pik-p locus[J]. Phytopathology, 2009, 99: 900-905. doi: 10.1094/PHYTO-99-8-0900
|
[26] |
于苗苗, 戴正元, 潘存红, 等. 广谱稻瘟病抗性基因Pigm和Pi2的抗谱差异及与Pi1的互作效应[J]. 作物学报, 2013, 39(11): 1927-1934.
|
[27] |
黎玲, 吕启明, 彭志荣, 等. 籼型水稻中稻瘟病抗性基因分布及抗性研究[J]. 杂交水稻, 2022, 37(1): 30-37.
|
[28] |
宛柏杰, 刘凯, 赵绍路, 等. 水稻抗稻瘟病基因Pi-ta、Pi-b、Pigm和Pi54在骨干亲本中的分布以及对穗颈瘟抗性的作用[J]. 西南农业学报, 2020, 33(1): 1-6.
|
[1] | XU Fengying, XIA Tengfei, LIU Qingting, ZOU Xiaoping, CHEN Zhen, LUO Juchuan. Multi-body dynamics simulation and experiment of pre-baling device for vertical harvesting of whole-stalk sugarcane[J]. Journal of South China Agricultural University, 2025, 46(1): 124-132. DOI: 10.7671/j.issn.1001-411X.202401022 |
[2] | JIANG Yu, QI Long, GONG Hao, LIU Chuang, TAO Ming, HU Xiaolu, CHEN Qinling. Design and experiment of pneumatic paddy intra-row weeding device[J]. Journal of South China Agricultural University, 2020, 41(6): 37-49. DOI: 10.7671/j.issn.1001-411X.202006015 |
[3] | ZHANG Tiemin, LI Wentao, LIANG Li. Multi-objective optimization design for turntable of dead pig vehicle based on sensitivity analysis[J]. Journal of South China Agricultural University, 2017, 38(5): 103-109. DOI: 10.7671/j.issn.1001-411X.2017.05.018 |
[4] | XIA Hong-mei, LI Zhi-wei, WANG Liu-yi. Dynamic Model Building of Metering Process for Pneumatic Plate-Type Vegetable Seed Metering Device[J]. Journal of South China Agricultural University, 2011, 32(1): 112-116. DOI: 10.7671/j.issn.1001-411X.2011.01.024 |
[5] | QIN Zhong,ZHANG Jia-en,LUO Shi-ming,WU Zhi-feng. Study on the Trend of Land Use Based on System Dynamics[J]. Journal of South China Agricultural University, 2009, 30(1). DOI: 10.7671/j.issn.1001-411X.2009.01.023 |
[6] | YANG De-gui, ZHANG Kun-yi. Dynamics of meromorphic functions[J]. Journal of South China Agricultural University, 2005, 26(4): 114-117. DOI: 10.7671/j.issn.1001-411X.2005.04.029 |
[7] | SONG Qing,XI Gang,YANG Chu-ping,CAO Yong-jun. Effect of low level radio frequency electromagnetic field on chlorophyll fluorescence dynamics process in photosynthesis cell of soybean and banana[J]. Journal of South China Agricultural University, 2004, 25(4): 67-70,97. DOI: 10.7671/j.issn.1001-411X.2004.04.017 |
[8] | THE BISTABILITY OF PTC AND APPK ON TRANSFORMATION OF STRUCTURE AND THE DYNAMICAL BASIS[J]. Journal of South China Agricultural University, 1997, (4): 107-112. |
[9] | Liu Cejun Yan Shangwei Song Gang Li Weichang Song Qing. METROPOLIS DYNAMICAL FINITE SIZE SCALING CALCULATION OF CRITICAL TEMPERATURE IN THE S=1 ISING MODEL[J]. Journal of South China Agricultural University, 1996, (4): 114-118. |
[10] | Wang Zhenzhong Lin Kung-hsun Faan Hwei-chung. MATHEMATICAL SIMULATION OF THE GROWTH DYNAMICS OF THE CHINESE-SMALL-CABBAGE[J]. Journal of South China Agricultural University, 1990, (1): 67-72. |