• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
JIANG Yu, QI Long, GONG Hao, et al. Design and experiment of pneumatic paddy intra-row weeding device[J]. Journal of South China Agricultural University, 2020, 41(6): 37-49. DOI: 10.7671/j.issn.1001-411X.202006015
Citation: JIANG Yu, QI Long, GONG Hao, et al. Design and experiment of pneumatic paddy intra-row weeding device[J]. Journal of South China Agricultural University, 2020, 41(6): 37-49. DOI: 10.7671/j.issn.1001-411X.202006015

Design and experiment of pneumatic paddy intra-row weeding device

More Information
  • Received Date: June 07, 2020
  • Available Online: May 17, 2023
  • Objective 

    In order to solve the problem of low automation and high difficulty of mechanical intra-row weeding in paddy field, a pneumatic paddy intra-row weeding device was developed based on the recognition and positioning technology of machine vision.

    Method 

    The mechanism of pneumatic intra-row weeding device was designed by applying the principle of mechanical design, discrete element dynamics (DEM) simulation method and field test. Firstly, the structure of pneumatic intra-row weeding device was designed, and the geometric parameters of the mechanism were calculated using the kinematic equations. The feasibility of the mechanism was determined from kinematic simulation by the motion analysis module of Pro/E. Then, the interaction between weeding blade and paddy soil was simulated and the simulation results were confirmed through test. Finally, the field test was carried out to evaluate the working performance of the whole machine, and the working parameters affecting weeding rate and seeding injury rate were analyzed using a three-factor and five-level quadratic rotation orthogonal test.

    Result 

    The connecting rod length of the pneumatic intra-row weeding device was 35.00 mm and the oscillating rod length was 72.24 mm. The horizontal distance from the weeding part to the rotary center was 84 mm and the vertical distance was 191 mm. The DEM simulation results showed the better structure was the blending blade claw in 10°, which contact resistance was relatively low with an average value of 3.12 N when contacting with soil and the soil was disturbed to a great extent at this angle with affected area of 149.69 cm2. The field test results showed the device achieved the optimum working performance with the average weeding rate of 83.91% and seedling injury rate of 3.63% when the machine forward speed was 0.25 m/s, the cylinder protruding speed was 0.45 m/s and the weeding depth was 2.5 cm.

    Conclusion 

    The pneumatic paddy intra-row weeding device satisfies the requirements of above 80% weeding rate and below 4% seedling injury rate. It could meet the requirements of intra-row weeding and seedling avoiding in paddy field.

  • [1]
    徐正浩, 谢国雄, 周宇杰, 等. 不同株型和化感作用特性水稻对3种稻田主要杂草的干扰控制作用[J]. 作物学报, 2013, 39(7): 1293-1301.
    [2]
    李涛, 刘德好, 郭水良, 等. 双穗雀稗−空心莲子草杂草群落对稻田节肢动物、水稻产量的影响及其防除经济阈值[J]. 上海农业学报, 2013, 29(2): 47-51.
    [3]
    吴尚, 张纪利, 李保同, 等. 千金子对水稻生长的影响及其经济阈值[J]. 中国农业科学, 2015, 48(3): 469-478.
    [4]
    张自常, 李永丰, 张彬, 等. 稗属杂草对水稻生长发育和产量的影响[J]. 生态学杂志, 2014, 25(11): 3177-3184.
    [5]
    齐龙, 梁仲维, 蒋郁, 等. 轻型水田除草机的设计及试验[J]. 吉林大学学报(工学版), 2016, 46(3): 1004-1012.
    [6]
    岛根县, 三菱农机株式会社. 水田用の除草作业机: P2012-187073A [P]. 2012-10-04.
    [7]
    月森弘, 安达康弘, 三代满, 等. 回転ブラシ除草が水稲の生育、収量、品質および雑草抑制に及ぼす影響[C]. 日本作物学会演讲会要旨集第234回日本作物学会講演会. 日本作物学会, 2012(234): 62-63.
    [8]
    株式会社ォ—しック. 水田除草作业机: P2014-76004A [P]. 2014-05-01.
    [9]
    株式会社美善. 水田除草兼用沟切り机: P2008-99575A [P]. 2008-05-01.
    [10]
    王金武, 牛春亮, 张春建, 等. 3ZS-150型水稻中耕除草机设计与试验[J]. 农业机械学报, 2011, 42(2): 75-79.
    [11]
    石井博和, 佐藤正憲. 水田中耕用除草機の性能と除草効果向上方策[J]. 日本作物学会関東支部会報, 2006, 21: 22-23.
    [12]
    NORREMARK M, GRIEPENTROG H W, NIELSEN J, et al. The development and assessment of the accuracy of an autonomous GPS-based system for intra-row mechanical weed control in row crops[J]. Biosys Eng, 2008, 101: 396-410. doi: 10.1016/j.biosystemseng.2008.09.007
    [13]
    PEREZRUIZ M, SLAUGHTER D C, GLIEVER C, et al. Automatic GPS-based intra-row weed knife control system for transplanted row crops[J]. Comput Electron Agr, 2012, 80: 41-49. doi: 10.1016/j.compag.2011.10.006
    [14]
    株式会社石井農機. 水田用除草装置及びこれを備えた水田用除草行走装置: P2010-68778A [P]. 2010-04-02.
    [15]
    寺脇正樹, 片岡崇, 岡本博史, 等. 直播テンサイ用自動間引き•除草機の開発[J]. 農業機械学会誌, 2005, 67(5): 80-85.
    [16]
    胡炼, 罗锡文, 曾山, 等. 基于机器视觉的株间机械除草装置的作物识别与定位方法[J]. 农业工程学报, 2013, 29(10): 12-18.
    [17]
    蒋郁, 崔宏伟, 区颖刚, 等. 基于茎基部分区边缘拟合的稻株定位方法[J]. 农业机械学报, 2017, 48(6): 23-31.
    [18]
    JIANG Y, CUI H W, QI L, et al. Recognition and positioning method of rice seedlings based on machine vision[J]. IJSIP, 2016, 9(9): 265-278. doi: 10.14257/ijsip.2016.9.9.25
    [19]
    胡炼, 罗锡文, 严乙桉, 等. 基于爪齿余摆运动的株间机械除草装置研制与试验[J]. 农业工程学报, 2012, 28(14): 10-16.
    [20]
    牛春亮, 王金武. 稻田株间除草部件工作机理及除草轨迹试验[J]. 农机化研究, 2017(1): 177-181.
    [21]
    贾洪雷, 李森森, 王刚, 等. 中耕期玉米田间避苗除草装置设计与试验[J]. 农业工程学报, 2018, 34(7): 15-22.
    [22]
    齐龙, 赵柳霖, 马旭, 等. 3GY-1920型宽幅水田中耕除草机的设计与试验[J]. 农业工程学报, 2017, 33(8): 47-55.
    [23]
    齐龙, 梁仲维, 马旭, 等. 耙压式除草轮与水田土壤作用的流固耦合仿真分析及验证[J]. 农业工程学报, 2015, 31(5): 29-37.
    [24]
    郑文伟, 吴克坚. 机械原理[M]. 北京: 高等教育出版社, 1997: 85-86.
    [25]
    张鹏, 郭志军, 倪利伟, 等. 触土曲面准线曲率特征及其减阻性能分析[J]. 农机化研究, 2017, 2: 11-16.
    [26]
    LI B, CHEN Y, CHEN J. Modeling of soil-claw interaction using the discrete element method[J]. Soil Till Res, 2016, 158: 177-185. doi: 10.1016/j.still.2015.12.010
    [27]
    郑侃, 何进, 李洪文, 等. 基于离散元深松土壤模型的折线破土刃深松铲研究[J]. 农业机械学报, 2016, 47(9): 62-72.
    [28]
    陆华忠, 罗锡文. 水田驱动叶轮轮叶下土壤流动特性与动力性能研究[J]. 农业机械学报, 2010, 41(7): 50-53.
    [29]
    邬立岩, 齐胜, 宋玉秋, 等. 水田作业机械仿生表面减阻机理的离散元研究[J]. 沈阳农业大学学报, 2017, 48(1): 55-62.
    [30]
    葛茜, 马晓丽, 史莉娜, 等. 汉中水稻机械插秧插植深度试验初报[J]. 陕西农业科学, 2016, 62(9): 16-17.
  • Cited by

    Periodical cited type(11)

    1. 黄法伟,董晓威. 基于PLC的水田农业机械智能化研究综述. 农机使用与维修. 2025(02): 62-66 .
    2. 石林榕,赵武云,孙步功. 离散单元法技术在《离散单元法理论及其应用》课程中的探索. 黑河学院学报. 2024(01): 104-106+130 .
    3. 杨颖,杨宁,邹世彦,张秀明,王明丽. 自走乘坐式水田除草机设计与试验. 农机市场. 2024(09): 56-58 .
    4. 陈佶,刘伟华. 稻田机械除草技术装备研究与应用现状. 农业工程. 2024(11): 17-22 .
    5. 马永明. 水稻插秧机的复合作业探索. 农机使用与维修. 2023(02): 27-30 .
    6. 赵晋,黄赟,翁晓星,刘丹,戴津婧. 水稻田间除草装备现状与分析. 农业开发与装备. 2023(06): 33-35 .
    7. 刘婉茹,张国忠,周勇,徐红梅,吴擎,付建伟,黄成龙,张建. 智能化技术在水稻生产全程机械化中的应用研究与发展趋势. 华中农业大学学报. 2022(01): 105-122 .
    8. 周志强. 水田机械除草技术的研究现状与发展趋势. 南方农机. 2022(05): 16-18+28 .
    9. 陈学深,方根杜,熊悦淞,王宣霖,武涛. 基于稻田除草部件横向偏距视觉感知的对行控制系统设计与试验. 华南农业大学学报. 2022(05): 83-91 . 本站查看
    10. 李敏华,董永义,郭园,庄得凤,杨恒山. 玉米田杂草综合防控措施探究. 内蒙古民族大学学报(自然科学版). 2021(01): 77-83 .
    11. 王奇,周文琪,唐汉,马骁驰,王金武,佟童. 弧齿往复式稻田株间自动避苗除草装置设计与试验. 农业机械学报. 2021(06): 53-61+72 .

    Other cited types(10)

Catalog

    Article views (1282) PDF downloads (1133) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return