LI Gousi, ZHANG Yaling, MA Kun, et al. Advances in protein modifications for fertility regulation and reproductive development in plants[J]. Journal of South China Agricultural University, 2022, 43(6): 36-47. DOI: 10.7671/j.issn.1001-411X.202208054
    Citation: LI Gousi, ZHANG Yaling, MA Kun, et al. Advances in protein modifications for fertility regulation and reproductive development in plants[J]. Journal of South China Agricultural University, 2022, 43(6): 36-47. DOI: 10.7671/j.issn.1001-411X.202208054

    Advances in protein modifications for fertility regulation and reproductive development in plants

    More Information
    • Received Date: August 07, 2022
    • Available Online: May 17, 2023
    • Plant fertility regulation and reproductive development are not only essential for plant reproduction, but also the genetic basis of hybrid crop breeding. Post-translational protein modifications are the important regulation mechanism of different activities during plant development. In recent years, the molecular networks of fertility regulation and reproductive development in plants have been greatly advanced. However, very few reviews focus on how post-translational protein modifications involve in the plant fertility control. In this review, we summarize the function of phosphorylation, ubiquitination, SUMOylation and glycosylation on male fertility regulation, which provides some insights into further studies.

    • [1]
      GUO J, LIU Y. Molecular control of male reproductive development and pollen fertility in rice[J]. Journal of Integrative Plant Biology, 2012, 54(12): 967-978. doi: 10.1111/j.1744-7909.2012.01172.x
      [2]
      ABBAS A, YU P, SUN L, et al. Exploiting genic male sterility in rice: From molecular dissection to breeding applications[J]. Frontiers in Plant Science, 2021, 12: 629314. doi: 10.3389/fpls.2021.629314
      [3]
      欧阳亦聃, 陈乐天. 作物育性调控和分子设计杂交育种前沿进展与展望[J]. 中国科学(生命科学), 2021, 51(10): 1385-1395.
      [4]
      WAN X, WU S, LI Z, et al. Lipid metabolism: Critical roles in male fertility and other aspects of reproductive development in plants[J]. Molecular Plant, 2020, 13(7): 955-983. doi: 10.1016/j.molp.2020.05.009
      [5]
      LEI X, LIU B. Tapetum-dependent male meiosis progression in plants: Increasing evidence emerges[J]. Frontiers in Plant Science, 2020, 10: 1667. doi: 10.3389/fpls.2019.01667
      [6]
      VERMA N. Transcriptional regulation of anther development in Arabidopsis[J]. Gene, 2019, 689: 202-209. doi: 10.1016/j.gene.2018.12.022
      [7]
      MILLAR A H, HEAZLEWOOD J L, GIGLIONE C, et al. The scope, functions, and dynamics of posttranslational protein modifications[J]. Annual Review of Plant Biology, 2019, 70(1): 119-151. doi: 10.1146/annurev-arplant-050718-100211
      [8]
      STUHRWOHLDT N, SCHALLER A. Regulation of plant peptide hormones and growth factors by post-translational modification[J]. Plant Biology, 2019, 21(S1): 49-63. doi: 10.1111/plb.12881
      [9]
      YU F, LI M, HE D, et al. Advances on post-translational modifications involved in seed germination[J]. Frontiers in Plant Science, 2021, 12: 642979. doi: 10.3389/fpls.2021.642979
      [10]
      KOSOVÁ K, VÍTÁMVÁS P, PRÁŠIL I T, et al. Plant proteoforms under environmental stress: Functional proteins arising from a single gene[J]. Frontiers in Plant Science, 2021, 12: 793113. doi: 10.3389/fpls.2021.793113
      [11]
      WANG W, LI A, ZHANG Z, et al. Posttranslational modifications: Regulation of nitrogen utilization and signaling[J]. Plant and Cell Physiology, 2021, 62(4): 543-552. doi: 10.1093/pcp/pcab008
      [12]
      QI H, XIA F N, XIAO S. Autophagy in plants: Physiological roles and post-translational regulation[J]. Journal of Integrative Plant Biology, 2021, 63(1): 161-179. doi: 10.1111/jipb.12941
      [13]
      SCOTT R J, SPIELMAN M, DICKINSON H G. Stamen structure and function[J]. The Plant Cell, 2004, 16(Suppl): S46-S60.
      [14]
      ZHANG D, WILSON Z A. Stamen specification and anther development in rice[J]. Chinese Science Bulletin, 2009, 54(14): 2342-2353. doi: 10.1007/s11434-009-0348-3
      [15]
      CAI W, ZHANG D. The role of receptor-like kinases in regulating plant male reproduction[J]. Plant Reproduction, 2018, 31(1): 77-87. doi: 10.1007/s00497-018-0332-7
      [16]
      CUI Y, LU X, GOU X. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives[J]. Plant Communications, 2022, 3(1): 100273. doi: 10.1016/j.xplc.2021.100273
      [17]
      HORD C L H, SUN Y, PILLITTERI L J, et al. Regulation of Arabidopsis early anther development by the mitogen-activated protein kinases, MPK3 and MPK6, and the ERECTA and related receptor-like kinases[J]. Molecular Plant, 2008, 1(4): 645-658. doi: 10.1093/mp/ssn029
      [18]
      ZHAO F, ZHENG Y, ZENG T, et al. Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 kinase is required for anther development[J]. Plant Physiology, 2017, 173(4): 2265-2277. doi: 10.1104/pp.16.01765
      [19]
      LIU T, JIANG G, YAO X, et al. The leucine-rich repeat receptor-like kinase OsERL plays a critical role in anther lobe formation in rice[J]. Biochemical and Biophysical Research Communications, 2021, 563: 85-91. doi: 10.1016/j.bbrc.2021.05.059
      [20]
      HORD C L H, CHEN C, DEYOUNG B J, et al. The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development[J]. The Plant Cell, 2006, 18(7): 1667-1680. doi: 10.1105/tpc.105.036871
      [21]
      MIZUNO S, OSAKABE Y, MARUYAMA K, et al. Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana[J]. The Plant Journal, 2007, 50(5): 751-766. doi: 10.1111/j.1365-313X.2007.03083.x
      [22]
      CUI Y, HU C, ZHU Y, et al. CIK receptor kinases determine cell fate specification during early anther development in Arabidopsis[J]. The Plant Cell, 2018, 30(10): 2383-2401. doi: 10.1105/tpc.17.00586
      [23]
      ZHAO D Z, WANG G F, SPEAL B, et al. The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther[J]. Genes & Development, 2002, 16(15): 2021-2031.
      [24]
      CANALES C, BHATT A M, SCOTT R, et al. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis[J]. Current Biology, 2002, 12(20): 1718-1727. doi: 10.1016/S0960-9822(02)01151-X
      [25]
      YANG S, XIE L, MAO H, et al. TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther[J]. The Plant Cell, 2003, 15(12): 2792-2804. doi: 10.1105/tpc.016618
      [26]
      YANG S, JIANG L, PUAH C S, et al. Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with EXCESS MICROSPOROCYTES1/EXTRA SPOROGENOUS CELLS[J]. Plant Physiology, 2005, 139(1): 186-191. doi: 10.1104/pp.105.063529
      [27]
      JIA G, LIU X, OWEN H A, et al. Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 2220-2225. doi: 10.1073/pnas.0708795105
      [28]
      COLCOMBET J, BOISSON-DERNIER A, ROS-PALAU R, et al. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation[J]. The Plant Cell, 2005, 17(12): 3350-3361. doi: 10.1105/tpc.105.036731
      [29]
      ALBRECHT C, RUSSINOVA E, HECHT V, et al. The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis[J]. The Plant Cell, 2005, 17(12): 3337-3349. doi: 10.1105/tpc.105.036814
      [30]
      LI Z, WANG Y, HUANG J, et al. Two SERK receptor-like kinases interact with EMS1 to control anther cell fate determination[J]. Plant Physiology, 2017, 173(1): 326-337. doi: 10.1104/pp.16.01219
      [31]
      CHEN W, LV M, WANG Y, et al. BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling to control tapetum development in Arabidopsis thaliana[J]. Nature Communications, 2019, 10(1): 4164. doi: 10.1038/s41467-019-12118-4
      [32]
      ZHENG B, BAI Q, WU L, et al. EMS1 and BRI1 control separate biological processes via extracellular domain diversity and intracellular domain conservation[J]. Nature Communications, 2019, 10(1): 4165. doi: 10.1038/s41467-019-12112-w
      [33]
      NONOMURA K, MIYOSHI K, EIGUCHI M, et al. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice[J]. The Plant Cell, 2003, 15(8): 1728-1739. doi: 10.1105/tpc.012401
      [34]
      ZHAO X, DEPALMA J, OANE R, et al. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers[J]. The Plant Journal, 2008, 54(3): 375-387. doi: 10.1111/j.1365-313X.2008.03426.x
      [35]
      HONG L, TANG D, SHEN Y, et al. MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther[J]. New Phytologist, 2012, 196(2): 402-413. doi: 10.1111/j.1469-8137.2012.04270.x
      [36]
      SHI Y, GUO S, ZHANG R, et al. The role of Somatic embryogenesis receptor-like kinase 1 in controlling pollen production of the Gossypium anther[J]. Molecular Biology Reports, 2014, 41(1): 411-422. doi: 10.1007/s11033-013-2875-x
      [37]
      WANG C J, NAN G L, KELLIHER T, et al. Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development[J]. Development, 2012, 139(14): 2594-2603. doi: 10.1242/dev.077891
      [38]
      YANG C, SOFRONI K, WIJNKER E, et al. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis[J]. The EMBO Journal, 2020, 39(3): e101625.
      [39]
      WIJNKER E, HARASHIMA H, MüLLER K, et al. The Cdk1/Cdk2 homolog CDKA;1 controls the recombination landscape in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(25): 12534-12539. doi: 10.1073/pnas.1820753116
      [40]
      NAGESWARAN D C, KIM J, LAMBING C, et al. HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis[J]. Nature Plants, 2021, 7(4): 452-467. doi: 10.1038/s41477-021-00889-y
      [41]
      GARCIA V, BRUCHET H, CAMESCASSE D, et al. AtATM is essential for meiosis and the somatic response to DNA damage in plants[J]. The Plant Cell, 2003, 15(1): 119-132. doi: 10.1105/tpc.006577
      [42]
      ZHANG C, ZHANG F, CHENG X, et al. OsATM safeguards accurate repair of meiotic double-strand breaks in rice[J]. Plant Physiology, 2020, 183(3): 1047-1057. doi: 10.1104/pp.20.00053
      [43]
      WANG M, TANG D, LUO Q, et al. BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis[J]. The Plant Cell, 2012, 24(12): 4961-4973.
      [44]
      YUAN G, AHOOTAPEH B H, KOMAKI S, et al. PROTEIN PHOSHATASE 2A B'α and β maintain centromeric sister chromatid cohesion during meiosis in Arabidopsis[J]. Plant Physiology, 2018, 178(1): 317-328. doi: 10.1104/pp.18.00281
      [45]
      ZHANG Y Y, ZHANG H H, GAO Y Y, et al. Protein phosphatase 2A B'α and B'β protect centromeric cohesion during meiosis I[J]. Plant Physiology, 2019, 179(4): 1556-1568. doi: 10.1104/pp.18.01320
      [46]
      MIN L, ZHU L, TU L, et al. Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase[J]. The Plant Journal, 2013, 75(5): 823-835. doi: 10.1111/tpj.12245
      [47]
      YU J, HAN J, KIM Y J, et al. Two rice receptor-like kinases maintain male fertility under changing temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(46): 12327-12332. doi: 10.1073/pnas.1705189114
      [48]
      WANG B, FANG R, ZHANG J, et al. Rice LecRK5 phosphorylates a UGPase to regulate callose biosynthesis during pollen development[J]. Journal of Experimental Botany, 2020, 71(14): 4033-4041. doi: 10.1093/jxb/eraa180
      [49]
      PENG X, WANG M, LI Y, et al. Lectin receptor kinase OsLecRK-S. 7 is required for pollen development and male fertility[J]. Journal of Integrative Plant Biology, 2020, 62(8): 1227-1245. doi: 10.1111/jipb.12897
      [50]
      HE Z, ZOU T, XIAO Q, et al. An L-type lectin receptor-like kinase promotes starch accumulation during rice pollen maturation[J]. Development, 2021, 148(6): 196378. doi: 10.1242/dev.196378
      [51]
      ZHANG X, ZHAO G, TAN Q, et al. Rice pollen aperture formation is regulated by the interplay between OsINP1 and OsDAF1[J]. Nature Plants, 2020, 6(4): 394-403. doi: 10.1038/s41477-020-0630-6
      [52]
      WAN J, PATEL A, MATHIEU M, et al. A lectin receptor-like kinase is required for pollen development in Arabidopsis[J]. Plant Molecular Biology, 2008, 67(5): 469-482. doi: 10.1007/s11103-008-9332-6
      [53]
      ORR J N, WAUGH R, COLAS I. Ubiquitination in plant meiosis: Recent advances and high throughput methods[J]. Frontiers in Plant Science, 2021, 12: 667314. doi: 10.3389/fpls.2021.667314
      [54]
      WANG Y, WU H, LIANG G, et al. Defects in nucleolar migration and synapsis in male prophaseI in the ask1-1 mutant of Arabidopsis[J]. Sexual Plant Reproduction, 2004, 16(6): 273-282.
      [55]
      WANG Y, YANG M. The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein acts predominately from leptotene to pachytene and represses homologous recombination in male meiosis[J]. Planta, 2006, 223(3): 613-617. doi: 10.1007/s00425-005-0154-3
      [56]
      HE Y, WANG C, HIGGINS J D, et al. MEIOTIC F-BOX is essential for male meiotic DNA double-strand break repair in rice[J]. The Plant Cell, 2016, 28(8): 1879-1893. doi: 10.1105/tpc.16.00108
      [57]
      ZHANG F, TANG D, SHEN Y, et al. The F-box protein ZYGO1 mediates bouquet formation to promote homologous pairing, synapsis, and recombination in rice meiosis[J]. The Plant Cell, 2017, 29(10): 2597-2609. doi: 10.1105/tpc.17.00287
      [58]
      JING J, WU N, XU W, et al. An F-box protein ACOZ1 functions in crossover formation by ensuring proper chromosome compaction during maize meiosis[J]. New Phytologist, 2022, 235(1): 157-172. doi: 10.1111/nph.18116
      [59]
      ZHENG B, CHEN X, MCCORMICK S. The anaphase-promoting complex is a dual integrator that regulates both microRNA-mediated transcriptional regulation of cyclin B1 and degradation of cyclin B1 during Arabidopsis male gametophyte development[J]. The Plant Cell, 2011, 23(3): 1033-1046. doi: 10.1105/tpc.111.083980
      [60]
      XU R Y, XU J, WANG L, et al. The Arabidopsis anaphase-promoting complex/cyclosome subunit 8 is required for male meiosis[J]. New Phytologist, 2019, 224(1): 229-241. doi: 10.1111/nph.16014
      [61]
      NIU B, WANG L, ZHANG L, et al. Arabidopsis cell division cycle 20.1 is required for normal meiotic spindle assembly and chromosome segregation[J]. The Plant Cell, 2015, 27(12): 3367-3382. doi: 10.1105/tpc.15.00834
      [62]
      CROMER L, HEYMAN J, TOUATI S, et al. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM[J]. PLoS Genetics, 2012, 8(7): e1002865. doi: 10.1371/journal.pgen.1002865
      [63]
      CIFUENTES M, JOLIVET S, CROMER L, et al. TDM1 regulation determines the number of meiotic divisions[J]. PLoS Genetics, 2016, 12(2): e1005856. doi: 10.1371/journal.pgen.1005856
      [64]
      CROMER L, JOLIVET S, SINGH D K, et al. Patronus is the elusive plant securin, preventing chromosome separation by antagonizing separase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(32): 16018-16027. doi: 10.1073/pnas.1906237116
      [65]
      CHELYSHEVA L, VEZON D, CHAMBON A, et al. The Arabidopsis HEI10 is a new ZMM protein related to Zip3[J]. PLoS Genetics, 2012, 8(7): e1002799. doi: 10.1371/journal.pgen.1002799
      [66]
      ZHANG J, WANG C, HIGGINS J D, et al. A multiprotein complex regulates interference-sensitive crossover formation in rice[J]. Plant Physiology, 2019, 181(1): 221-235. doi: 10.1104/pp.19.00082
      [67]
      廖桂艳, 金城, 汪斌. 染色体结构维持蛋白Smc5/6复合体的结构与功能[J]. 广西科学, 2021, 28(6): 539-546. doi: 10.13656/j.cnki.gxkx.20220117.010
      [68]
      LIU M, SHI S, ZHANG S, et al. SUMO E3 ligase AtMMS21 is required for normal meiosis and gametophyte development in Arabidopsis[J]. BMC Plant Biology, 2014, 14: 153. doi: 10.1186/1471-2229-14-153
      [69]
      YANG F, FERNÁNDEZ-JIMÉNEZ N, TUČKOVÁ M, et al. Defects in meiotic chromosome segregation lead to unreduced male gametes in Arabidopsis SMC5/6 complex mutants[J]. The Plant Cell, 2021, 33(9): 3104-3119. doi: 10.1093/plcell/koab178
      [70]
      ZHANG J, AUGUSTINE R C, SUZUKI M, et al. The SUMO ligase MMS21 profoundly influences maize development through its impact on genome activity and stability[J]. PLoS Genetics, 2021, 17(10): e1009830. doi: 10.1371/journal.pgen.1009830
      [71]
      WANG H, LU Y, JIANG T, et al. The Arabidopsis U-box/ARM repeat E3 ligase AtPUB4 influences growth and degeneration of tapetal cells, and its mutation leads to conditional male sterility[J]. The Plant Journal, 2013, 74(3): 511-523. doi: 10.1111/tpj.12146
      [72]
      CHEN L, DENG R, LIU G, et al. Cytological and transcriptome analyses reveal OsPUB73 defect affects the gene expression associated with tapetum or pollen exine abnormality in rice[J]. BMC Plant Biology, 2019, 19(1): 546. doi: 10.1186/s12870-019-2175-2
      [73]
      CAO H, LI X, WANG Z, et al. Histone H2B monoubiquitination mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 is involved in anther development by regulating tapetum degradation-related genes in rice[J]. Plant Physiology, 2015, 168(4): 1389-1405. doi: 10.1104/pp.114.256578
      [74]
      LI L, LI Y, SONG S, et al. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development[J]. Planta, 2015, 241(1): 157-166. doi: 10.1007/s00425-014-2160-9
      [75]
      KIM H J, OH S A, BROWNFIELD L, et al. Control of plant germline proliferation by SCF FBL17 degradation of cell cycle inhibitors[J]. Nature, 2008, 455(7216): 1134-1137. doi: 10.1038/nature07289
      [76]
      GUSTI A, BAUMBERGER N, NOWACK M, et al. The Arabidopsis thaliana F-box protein FBL17 is essential for progression through the second mitosis during pollen development[J]. PLoS One, 2009, 4(3): e4780. doi: 10.1371/journal.pone.0004780
      [77]
      YAO X, YANG H, ZHU Y, et al. The canonical E2Fs are required for germline development in Arabidopsis[J]. Frontiers in Plant Science, 2018, 9: 638. doi: 10.3389/fpls.2018.00638
      [78]
      LIU Y, LAI J, YU M, et al. The Arabidopsis SUMO E3 ligase AtMMS21 dissociates the E2Fa/DPa complex in cell cycle regulation[J]. The Plant Cell, 2016, 28(9): 2225-2237. doi: 10.1105/tpc.16.00439
      [79]
      WANG H, MAKEEN K, YAN Y, et al. OsSIZ1 regulates the vegetative growth and reproductive development in rice[J]. Plant Molecular Biology Reporter, 2011, 29(2): 411-417. doi: 10.1007/s11105-010-0232-y
      [80]
      THANGASAMY S, GUO C L, CHUANG M H, et al. Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence[J]. New Phytologist, 2011, 189(3): 869-882. doi: 10.1111/j.1469-8137.2010.03538.x
      [81]
      PEI W, JAIN A, AI H, et al. OsSIZ2 regulates nitrogen homeostasis and some of the reproductive traits in rice[J]. Journal of Plant Physiology, 2019, 232: 51-60. doi: 10.1016/j.jplph.2018.11.020
      [82]
      CASTRO P H, SANTOS M Â, FREITAS S, et al. Arabidopsis thaliana SPF1 and SPF2 are nuclear-located ULP2-like SUMO proteases that act downstream of SIZ1 in plant development[J]. Journal of Experimental Botany, 2018, 69(19): 4633-4649. doi: 10.1093/jxb/ery265
      [83]
      LIU L L, JIANG Y Y, ZHANG X X, et al. Two SUMO proteases SUMO PROTEASE RELATED TO FERTILITY1 and 2 are required for fertility in Arabidopsis[J]. Plant Physiology, 2017, 175(4): 1703-1719. doi: 10.1104/pp.17.00021
      [84]
      TAN H, LIANG W, HU J, et al. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice[J]. Developmental Cell, 2012, 22(6): 1127-1137. doi: 10.1016/j.devcel.2012.04.011
      [85]
      COSTA M L, SOBRAL R, COSTA M M R, et al. Evaluation of the presence of arabinogalactan proteins and pectins during Quercus suber male gametogenesis[J]. Annals of Botany, 2015, 115(1): 81-92. doi: 10.1093/aob/mcu223
      [86]
      MA T, DONG F, LUAN D, et al. Gene expression and localization of arabinogalactan proteins during the development of anther, ovule, and embryo in rice[J]. Protoplasma, 2019, 256(4): 909-922. doi: 10.1007/s00709-019-01349-3
      [87]
      LI J, YU M, GENG L L, et al. The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis[J]. The Plant Journal, 2010, 64(3): 482-497. doi: 10.1111/j.1365-313X.2010.04344.x
      [88]
      LIN S, DONG H, ZHANG F, et al. BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris[J]. Annals of Botany, 2014, 113(5): 777-788. doi: 10.1093/aob/mct315
      [89]
      DENG Y, WAN Y, LIU W, et al. OsFLA1 encodes a fasciclin-like arabinogalactan protein and affects pollen exine development in rice[J]. Theoretical and Applied Genetics, 2022, 135(4): 1247-1262. doi: 10.1007/s00122-021-04028-1
      [90]
      ZHOU D, ZOU T, ZHANG K, et al. DEAP1 encodes a fasciclin-like arabinogalactan protein required for male fertility in rice[J]. Journal of Integrative Plant Biology, 2022, 64(7): 1430-1447. doi: 10.1111/jipb.13271
      [91]
      WANG D, SKIBBE D S, WALBOT V. Maize male sterile 8 (Ms8), a putative β-1, 3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development[J]. Plant Reproduction, 2013, 26(4): 329-338. doi: 10.1007/s00497-013-0230-y
      [92]
      SUZUKI T, NARCISO J O, ZENG W, et al. KNS4/UPEX1: A type II arabinogalactan β-(1, 3)-galactosyltransferase required for pollen exine development[J]. Plant Physiology, 2017, 173(1): 183-205. doi: 10.1104/pp.16.01385
      [93]
      WANG K Q, YU Y H, JIA X L, et al. Delayed callose degradation restores the fertility of multiple P/TGMS lines in Arabidopsis[J]. Journal of Integrative Plant Biology, 2022, 64(3): 717-730. doi: 10.1111/jipb.13205
      [94]
      GESERICK C, TENHAKEN R. UDP-sugar pyrophosphorylase is essential for arabinose and xylose recycling, and is required during vegetative and reproductive growth in Arabidopsis[J]. The Plant Journal, 2013, 74(2): 239-247. doi: 10.1111/tpj.12116
      [95]
      CHEN Y, SHEN H, HSU P, et al. N-acetylglucosamine-1-P uridylyltransferase 1 and 2 are required for gametogenesis and embryo development in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2014, 55(11): 1977-1993. doi: 10.1093/pcp/pcu127
      [96]
      VU K V, JEONG C Y, NGUYEN T T, et al. Deficiency of AtGFAT1 activity impairs growth, pollen germination and tolerance to tunicamycin in Arabidopsis[J]. Journal of Experimental Botany, 2019, 70(6): 1775-1787. doi: 10.1093/jxb/erz055
      [97]
      EDSTAM M M, EDQVIST J. Involvement of GPI-anchored lipid transfer proteins in the development of seed coats and pollen in Arabidopsis thaliana[J]. Physiologia Plantarum, 2014, 152(1): 32-42. doi: 10.1111/ppl.12156
      [98]
      GAO H, ZHANG Y, WANG W, et al. Two membrane-anchored aspartic proteases contribute to pollen and ovule development[J]. Plant Physiology, 2017, 173(1): 219-239. doi: 10.1104/pp.16.01719
      [99]
      FABRICE T N, VOGLER H, DRAEGER C, et al. LRX proteins play a crucial role in pollen grain and pollen tube cell wall development[J]. Plant Physiology, 2018, 176(3): 1981-1992. doi: 10.1104/pp.17.01374
      [100]
      FANG H, SHAO Y, WU G. Reprogramming of histone H3 lysine methylation during plant sexual reproduction[J]. Frontiers in Plant Science, 2021, 12: 782450. doi: 10.3389/fpls.2021.782450
      [101]
      ZHOU H, LIU Y, LIANG Y, et al. The function of histone lysine methylation related SET domain group proteins in plants[J]. Protein Science, 2020, 29(5): 1120-1137. doi: 10.1002/pro.3849
      [102]
      LI X, YE J, MA H, et al. Proteomic analysis of lysine acetylation provides strong evidence for involvement of acetylated proteins in plant meiosis and tapetum function[J]. The Plant Journal, 2018, 93(1): 142-154. doi: 10.1111/tpj.13766
      [103]
      YE J, ZHANG Z, LONG H, et al. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers[J]. The Plant Journal, 2015, 84(3): 527-544. doi: 10.1111/tpj.13019
      [104]
      KLODOVÁ B, FÍLA J. A decade of pollen phosphoproteomics[J]. International Journal of Molecular Sciences, 2021, 22(22): 12212. doi: 10.3390/ijms222212212
      [105]
      ZHU L, CHENG H, PENG G, et al. Ubiquitinome profiling reveals the landscape of ubiquitination regulation in rice young panicles[J]. Genomics Proteomics & Bioinformatics, 2020, 18(3): 305-320.
    • Related Articles

      [1]HU Keling, ZHU Zhujun. Effects of Different Concentrations of Abscisic Acid on Glucosinolates Contents in Pakchoi[J]. Journal of South China Agricultural University, 2013, 34(3): 366-371. DOI: 10.7671/j.issn.1001-411X.2013.03.017
      [2]XIA Bin, GUO Tao, WANG Hui, LIU Yong-zhu, ZHANG Jian-guo, CHEN Zhi-qiang. Activity Assay of Grain Starch Synthesis Key Enzymes in Two Low Amylose Content Mutants from Oryza indica[J]. Journal of South China Agricultural University, 2011, 32(3): 10-13. DOI: 10.7671/j.issn.1001-411X.2011.03.003
      [3]GUO Tao, HAN Shi-man, XIA Bin, WANG Hui, LIU Yong-zhu, ZHANG Jian-guo, CHEN Zhi-qiang. Study on the Wx Allele Gene Sequences of Two Low Amylose Content Mutants of Oryza indica[J]. Journal of South China Agricultural University, 2011, 32(3): 6-9. DOI: 10.7671/j.issn.1001-411X.2011.03.002
      [4]GUO Tao,WEI Xuan,WANG Hui,LIU Yong-zhu,ZHOU Wei-jian,ZHANG Jian-guo,CHEN Zhi-qiang. Genetic Analysis of Low Amylose Content Trait in Two Oryza indica Mutants[J]. Journal of South China Agricultural University, 2009, 30(1). DOI: 10.7671/j.issn.1001-411X.2009.01.004
      [5]GAO Zhen zhong 1,2,WANG Xiao bo 2,SUN Jin 2,SHEN Jia rui 1. Synthesis of Low Toxicity Urea-Formaldehyde Resin Adhesive[J]. Journal of South China Agricultural University, 2002, 23(2): 84-85,92. DOI: 10.7671/j.issn.1001-411X.2002.02.024
      [6]MA Hong yan 1,YANG Yi gong 2. Studies on Rheological Properties of Starch Paste Modified by Isoamylase[J]. Journal of South China Agricultural University, 2002, 23(2): 81-83. DOI: 10.7671/j.issn.1001-411X.2002.02.023
      [7]HAO Tong qi,XIE Xiao yan,HONG Tian sheng. Experiment Study on the Shear Strength of Soil Root Composite[J]. Journal of South China Agricultural University, 2000, (4): 78-80. DOI: 10.7671/j.issn.1001-411X.2000.04.024
      [8]Gao Zhenzhong,Shen Jiarui,Wang Xiaobo. Study on the Stability of the Uron Type Urea-Formaldehyde Resins During Storage[J]. Journal of South China Agricultural University, 1999, (2): 106-108.
      [9]EVALUATION OF BEAN GERMPLASM FOR LOW PHOSPHORUS TOLERANCE ON ACID RED SOIL IN SOUTH CHINA[J]. Journal of South China Agricultural University, 1998, (2): 20-25.
      [10]Rong Tianyu Liu Zhihua. A STUDY ON THE ABNORMAL COPPER CONTENT IN LACCAIC ACID (LAC DYE)[J]. Journal of South China Agricultural University, 1990, (3): 26-30.

    Catalog

      Article views (206) PDF downloads (525) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return