Citation: | BIAN Zhiyi, XIAO Deqin, YIN Jianjun, et al. Design and application of intelligent supplemental light controller for pitaya based on PLC technology[J]. Journal of South China Agricultural University, 2022, 43(5): 124-132. DOI: 10.7671/j.issn.1001-411X.202112041 |
Different plants have different requirements for light intensity and light quality. The goal was to achieve intelligent light supplementation for plants through real-time illumination from LED lights.
Aiming at the need for sufficient supplementary light for the growth and development of pitaya (Hylocereus undatus) and regulation of fruit stage, an intelligent regulator specially for light supplementation of pitaya was designed using a new generation of the programmable logic controller (PLC) technology and yellow LED lights with wavelengths of 570−590 nm, and the corresponding data transmission protocol was designed. The hardware selection, circuit design and software design were performed, and control strategy and remote communication protocol were establised. Finally, an actual deployment and application experiment was carried out in a 10666 m2 pitaya farm in Xinxing County of Guangdong Province.
The regulator could achieve stable and long-term light supplementation for pitaya through manual, automatic and remote management, and data transmission was stable and reliable. The response time of the regulator was within 3 s, and light supplementation duration was 4 h. After using the regulator to supplement the light, the fruit ripening stage was advanced by 2−4 d, some pitaya trees bore 2−3 more fruits per tree, the output of pitaya fruit increased by 16.7%.
The device realizes the intelligent supplementary lighting of pitaya. It has obvious economic and social benefits and has a good popularization prospect.
[1] |
WARD J M, CUFR C A, DENZEL M A, et al. The dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis[J]. The Plant Cell, 2005, 17(2): 475-485. doi: 10.1105/tpc.104.027722
|
[2] |
杜洪涛, 刘世琦, 蒲高斌. 光质对彩色甜椒幼苗生长及叶绿素荧光特性的影响[J]. 西北农业学报, 2005(1): 41-45. doi: 10.3969/j.issn.1004-1389.2005.01.010
|
[3] |
ZHENG J, HU M J, GUO Y P. Regulation of photosynthesis by light quality and its mechanism in plants[J]. Chinese Journal of Applied Ecology, 2008, 19(7): 1619-1624.
|
[4] |
HÉRAUT-BRON V, ROBIN C, VARLET-GRANCHER C, et al. Phytochrome mediated effects on leaves of white clover: Consequences for light interception by the plant under competition for light[J]. Annals of Botany, 2001, 88(4): 737-743. doi: 10.1006/anbo.2001.1510
|
[5] |
李蔚, 李新旭, 李红岺, 等. 植物生长灯不同补光时间对日光温室番茄产量及品质的影响[J]. 安徽农业科学, 2019, 47(11): 49-50. doi: 10.3969/j.issn.0517-6611.2019.11.016
|
[6] |
张子鹏, 温健新, 黄爱政, 等. LED灯补光对温室甜椒产量及品质的影响[J]. 安徽农业科学, 2016, 44(29): 24-25. doi: 10.3969/j.issn.0517-6611.2016.29.011
|
[7] |
祁娟霞, 韦峰, 董艳, 等. 不同补光时间对温室番茄生长发育的影响[J]. 江苏农业科学, 2016, 44(8): 245-248.
|
[8] |
叶小荣, 赵晓美, 黄春红, 等. 大棚补光对火龙果开花及产量影响[J]. 中国南方果树, 2019, 48(6): 43-45.
|
[9] |
苏明, 任太军, 袁水清, 等. 海南火龙果反季节生产技术初探[J]. 中国南方果树, 2018, 47(1): 83-86.
|
[10] |
张立萍. 智能型LED植物生长灯控制系统设计[J]. 赤峰学院学报(自然科学版), 2021, 37(1): 57-62.
|
[11] |
覃文奇. LED植物生长灯的设计[J]. 河南科技, 2020(8): 68-70. doi: 10.3969/j.issn.1003-5168.2020.08.025
|
[12] |
何林, 李亨, 陈红豆. 智能LED植物补光灯设计[J]. 天津职业技术师范大学学报, 2018, 28(3): 31-35.
|
[13] |
徐秀知, 王淑凡, 王巍, 等. 全数字智能LED植物补光灯控制系统[J]. 天津工业大学学报, 2012, 31(4): 57-60. doi: 10.3969/j.issn.1671-024X.2012.04.014
|
[14] |
曲溪, 叶方铭, 宋杰琼, 等. LED灯在植物补光领域的效用探究[J]. 灯与照明, 2008, 32(2): 41-45. doi: 10.3969/j.issn.1008-5521.2008.02.012
|
[15] |
李彦荣, 常瑛, 魏玉杰, 等. 克服弱光寡照障碍的技术研究[J]. 安徽农业科学, 2010, 38(2): 687-690. doi: 10.3969/j.issn.0517-6611.2010.02.058
|
[16] |
张建飞, 杨景发, 胡岚岚, 等. 基于单片机植物组培专用LED光源的设计[J]. 河北农业大学学报, 2012, 35(5): 99-104.
|
[17] |
周益民, 周国泉, 徐一清. 基于单片机的温室植物LED补光系统设计[J]. 激光生物学报, 2013, 22(3): 214-219. doi: 10.3969/j.issn.1007-7146.2013.03.004
|
[18] |
王瑞, 喻晨, 马艳, 等. 基于STM8的植物工厂环境调控定时器的设计与应用[J]. 宁夏工程技术, 2020, 19(1): 13-17. doi: 10.3969/j.issn.1671-7244.2020.01.004
|
[19] |
张海辉, 杨青, 胡瑾, 等. 可控LED亮度的植物自适应精准补光系统[J]. 农业工程学报, 2011, 27(9): 153-158. doi: 10.3969/j.issn.1002-6819.2011.09.027
|
[20] |
崔瑾, 徐志刚, 邸秀茹. LED在植物设施栽培中的应用和前景[J]. 农业工程学报, 2008, 24(8): 249-253. doi: 10.3321/j.issn:1002-6819.2008.08.055
|
[21] |
刘卫国, 宋颖, 邹俊林, 等. LED灯模拟作物间作套种群体内光环境的设计与应用[J]. 农业工程学报, 2011, 27(8): 288-292. doi: 10.3969/j.issn.1002-6819.2011.08.050
|
[22] |
CHIANG C, BÅNKESTAD D, HOCH G. Effect of asynchronous light and temperature fluctuations on plant traits in indoor growth facilities[J]. Agronomy, 2021, 11(4): 755. doi: 10.3390/agronomy11040755.
|
[23] |
OLVERA-GONZALEZ E, RIVERA M M, ESCALANTE-GARCIA N, et al. Modeling energy LED light consumption based on an artificial intelligent method applied to closed plant production system[J]. Applied Sciences, 2021, 11(6): 2735. doi: 10.3390/app11062735.
|
[24] |
陈丹, 范万新, 韦思智, 等. 不同时长LED灯补光对火龙果生长的影响[J]. 气象研究与应用, 2021, 42(3): 44-49.
|
[25] |
陈丹, 潘建安, 马振军, 等. 火龙果四种不同光质LED灯补光效果试验[J]. 广西农学报, 2020, 35(5): 38-42.
|
[26] |
陈丹, 范万新, 欧善生, 等. 不同光质LED灯对火龙果补光催花试验[J]. 气象研究与应用, 2019, 40(2): 51-55. doi: 10.3969/j.issn.1673-8411.2019.02.012
|
[27] |
卓福昌, 韦优, 蒋娟娟, 等. 火龙果补光催花试验初探[J]. 中国热带农业, 2018(3): 52-53. doi: 10.3969/j.issn.1673-0658.2018.03.015
|
[1] | XU Ying, QIU Yangyang, SHEN Yue, FENG Huixin, FENG Yunyun, HUANG Xianhui. Preparation of enrofloxacin nanoemulsion and evaluation of pharmacodynamic of spray administration[J]. Journal of South China Agricultural University, 2021, 42(1): 42-48. DOI: 10.7671/j.issn.1001-411X.202001030 |
[2] | CEN Zhenzhao, YUE Xuejun, WANG Linhui, LING Kangjie, CHENG Ziyao, LU Yang. Design and test of self-adaptive variable spray system of UAV based on neural network PID[J]. Journal of South China Agricultural University, 2019, 40(4): 100-108. DOI: 10.7671/j.issn.1001-411X.201811017 |
[3] | CHEN Shengde, LAN Yubin, ZHOU Zhiyan, LIAO Juan, ZHU Qiuyang. Effects of spraying parameters of small plant protection UAV on droplets deposition distribution in citrus canopy[J]. Journal of South China Agricultural University, 2017, 38(5): 97-102. DOI: 10.7671/j.issn.1001-411X.2017.05.017 |
[4] | WANG Linhui, GAN Haiming, YUE Xuejun, LAN Yubin, WANG Jian, LIU Yongxin, LING Kangjie, CEN Zhenzhao. Design of a precision spraying control system with unmanned aerial vehicle based on image recognition[J]. Journal of South China Agricultural University, 2016, 37(6): 23-30. DOI: 10.7671/j.issn.1001-411X.2016.06.004 |
[5] | LAN Yubin, PENG Jin, JIN Ji. Research status and development of pesticide spraying droplet size[J]. Journal of South China Agricultural University, 2016, 37(6): 1-9. DOI: 10.7671/j.issn.1001-411X.2016.06.001 |
[6] | YUE Xue-jun,CHEN Shan,LU Yong-chao,LI Zhen,WANG Wan-zhang. Experiment of Shield Effects on Spray Breadth[J]. Journal of South China Agricultural University, 2008, 29(3). DOI: 10.7671/j.issn.1001-411X.2008.03.022 |
[7] | C. SINFORT,B. TISSEYRE,SONG Shu-ran,HONG Tian-sheng,WANG Wei-xing,ZHAO Xin,C. SINFORT,B. TISSEYRE. The Deposit Distribution of Spraying Droplet Based on DGPS in Rice Fields[J]. Journal of South China Agricultural University, 2006, 27(3): 97-99. DOI: 10.7671/j.issn.1001-411X.2006.03.027 |
[8] | LI Jian-guo,HUANG Xu-ming,HUANG Hui-bai. NAA sprays increased litchi fruit size and its roles[J]. Journal of South China Agricultural University, 2004, 25(2): 10-12. DOI: 10.7671/j.issn.1001-411X.2004.02.003 |
[9] | Cen Yijing, Tian Mingyi. Advances in the Use of Petroleum Spray Oils in Control of Pests in Citrus[J]. Journal of South China Agricultural University, 1999, (2): 118-122. |
[10] | Zeng Xinnian, zhao Shanhuan. INVSTIGATIONS ON TIMING SPRAY INSECTECICIDE AGAINST CITRUS LEAFMINER(Phyllocnistis citrella Stainton)[J]. Journal of South China Agricultural University, 1995, (1): 44-49. |