QIN Liuqi, DONG Xianming, SU Xiangyu, et al. Preparation and properties of microporous scaffolds by 3D printing of bio-based polylactic acid composites[J]. Journal of South China Agricultural University, 2022, 43(1): 37-43. DOI: 10.7671/j.issn.1001-411X.202106012
    Citation: QIN Liuqi, DONG Xianming, SU Xiangyu, et al. Preparation and properties of microporous scaffolds by 3D printing of bio-based polylactic acid composites[J]. Journal of South China Agricultural University, 2022, 43(1): 37-43. DOI: 10.7671/j.issn.1001-411X.202106012

    Preparation and properties of microporous scaffolds by 3D printing of bio-based polylactic acid composites

    More Information
    • Received Date: June 09, 2021
    • Available Online: May 17, 2023
    • Objective 

      To explore the feasibility of using bio-based polylactic acid composites to directly construct microporous scaffolds by 3D printing.

      Method 

      Thermogravimetric analyzer and differential scanning calorimeter were used to explore the thermal properties of bio-based polylactic acid composites, scanning electron microscopy was used to characterize the microscopic morphology of the bio-scaffold, and the live/dead cell staining was used for detecting cell adhesion of the scaffold.

      Result 

      The prepared 0.6%ADC-PHAP and 40%NaCl-PHAP composites had good thermal stability and processability, and were suitable for the fused deposition modeling 3D printing process. When the compressive strain was 80%, the corresponding compressive stresses of the 0.6%ADC-PHAP and 40%NaCl-PHAP scaffolds were 45.27 and 52.11 MPa, respectively. The initial decomposition temperature of the 0.6%ADC-PHAP composite was 19.5 ℃ lower than that of the 40%NaCl-PHAP composite. The porosity of the 0.6%ADC-PHAP scaffold reached 63.33% which was conducive to cell adhesion, and the cell compatibility was better than that of the 40%NaCl-PHAP scaffold.

      Conclusion 

      The bio-based polylactic acid composites can be used to directly construct microporous bio-scaffolds through fused deposition modeling 3D printing, and the prepared 0.6%ADC-PHAP bio-scaffold has certain application potential.

    • [1]
      OSTAFINSKA A, FORTELNÝ I, HODAN J, et al. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69(5): 229-241.
      [2]
      宋中波, 甄卫军. PCL增韧PLA材料的流变行为及其热降解动力学[J]. 塑料, 2017, 46(4): 32-38.
      [3]
      BAI Z F, DOU Q. Rheology, morphology, crystallization behaviors, mechanical and thermal Properties of poly(lactic acid)/polypropylene/maleic anhydride-grafted polypropylene blends[J]. Journal of Polymers and the Environment, 2018, 26(3): 959-969. doi: 10.1007/s10924-017-1006-5
      [4]
      程思敏, 陈丽杰, 洪阳阳, 等. 羟基磷灰石的表面改性及其对聚乳酸基多孔支架性能的影响[J]. 复合材料学报, 2018, 35(5): 1087-1094.
      [5]
      ZHOU C, YANG K, WANG K, et al. Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds[J]. Materials & Design, 2016, 109(21): 415-424.
      [6]
      SCOTT G D, KILGOUR D M. The density of random close packing of spheres[J]. Journal of Physics D: Applied Physics, 1969, 2(6): 863-866. doi: 10.1088/0022-3727/2/6/311
      [7]
      ZHANG J, XIAO D, HE X, et al. A novel porous bioceramic scaffold by accumulating hydroxyapatite spheres for large bone tissue engineering: III: Characterization of porous structure[J]. Materials Science & Engineering : C, 2018, 89(8): 223-229.
      [8]
      KAKUMANU V, SRINIVAS SUNDARRAM S. Dual pore network polymer foams for biomedical applications via combined solid state foaming and additive manufacturing[J]. Materials Letters, 2018, 213(4): 366-369.
      [9]
      SONG P, ZHOU C, FAN H, et al. Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology[J]. Composites Part B:Engineering, 2018, 152(21): 151-159.
      [10]
      LU T, LI Y,CHEN T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering[J]. International Journal of Nanomedicine, 2013, 8(1): 337-350.
      [11]
      HAIDER A, HAIDER S, KUMMARA M R, et al. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review[J]. Journal of Saudi Chemical Society, 2020, 24(2): 186-215. doi: 10.1016/j.jscs.2020.01.002
      [12]
      LI X, ZHANG S J, ZHANG X, et al. Biocompatibility and physicochemical characteristics of poly(Ɛ-caprolactone)/poly(lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering[J]. Materials & Design, 2017, 114(2): 149-160.
      [13]
      PATI F, SONG T H, RIJAL G, et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration[J]. Biomaterials, 2015, 37(2): 230-241.
      [14]
      FERRI J M, JORDÁ J, MONTANES N, et al. Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite[J]. Journal of Thermoplastic Composite Materials, 2017, 31(7): 865-881.
      [15]
      ZHAO H, ZHAO G. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53(1): 59-67.
      [16]
      HO M P, LAU K T, WANG H, et al. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles[J]. Composites Part B:Engineering, 2015, 81(14): 14-25.
      [17]
      ABBASI H, ANTUNES M, VELASCO J I. Graphene nanoplatelets-reinforced polyetherimide foams prepared by water vapor-induced phase separation[J]. Express Polymer Letters, 2015, 9(5): 412-423. doi: 10.3144/expresspolymlett.2015.40
      [18]
      ABU HASSAN N A, AHMAD S, CHEN R S, et al. Cells analyses, mechanical and thermal stability of extruded polylactic acid/kenaf bio-composite foams[J]. Construction and Building Materials, 2020, 240(11): 117884.
      [19]
      FRACKOWIAK S, LUDWICZAK J, LELUK K, et al. Foamed poly(lactic acid) composites with carbonaceous fillers for electromagnetic shielding[J]. Materials and Design, 2015, 65(1): 749-756.
      [20]
      张学盈, 崔永岩. AC发泡剂与增塑剂对PVC发泡材料性能的影响[J]. 塑料, 2016, 45(1): 32-34.
    • Cited by

      Periodical cited type(35)

      1. 陈仕猛,徐章琼,贺成龙. 规模化养殖场粪污处理智能监管技术研究. 养殖与饲料. 2025(01): 38-41 .
      2. 邢伟杰,金波,石诗影,蒲俊华,赵华轩,李尚民,窦新红. 家禽养殖环境调控关键技术与设施设备研究进展. 中国家禽. 2025(03): 149-156 .
      3. 邓永涛,尹苗,王聪,陈希文. 猪舍环境影响因子预测模型的研究进展. 家畜生态学报. 2025(02): 122-128 .
      4. 漆海霞,李承杰,黄桂珍. 基于轻量化YOLOv4的死淘鸡目标检测算法. 中国农机化学报. 2024(05): 195-201 .
      5. 韩雨晓,李帅,王宁,安娅军,张漫,李寒. 基于3D激光雷达的鸡舍通道中心线检测方法. 农业工程学报. 2024(09): 173-181 .
      6. 王兴家,张霞,穆元杰,盛清凯,袁震,郑纪业. 基于物联网的猪舍环境监测系统. 现代农业装备. 2024(03): 54-62 .
      7. 肖德琴,黄一桂,熊悦淞,刘俊彬,谭祖杰,吕斯婷. 畜禽机器人技术研究进展与未来展望. 华南农业大学学报. 2024(05): 624-634+620 . 本站查看
      8. 付晓,魏晓莉,严士超,戴百生,姜润杰,周建钊,张翼,王鑫杰,沈维政. 畜舍养殖环境智能监控研究现状及展望. 华南农业大学学报. 2024(05): 672-684 . 本站查看
      9. 余志安,肖瑞全,李秋生,汤晋,陈恒,谢宁,刘小春. 江西省家禽产业数字化现实基础、制约因素及推进路径. 中国禽业导刊. 2024(08): 19-25 .
      10. 赵敏,胡广英,白海,曹日亮. 智能化养猪装备的研究进展. 中国猪业. 2024(04): 78-85 .
      11. 刘新,平阳,王明,张金梦,张倩,姜翠红. 基于物联网技术的鸡智能育种平台研究与应用. 中国家禽. 2024(10): 114-120 .
      12. 陈怡然,熊竹青,周脚根,王荃,舒剑成,闫银发,杨兰林,冯泽猛,熊本海,印遇龙. 畜禽养殖业数据应用展望和问题分析. 中国科学院院刊. 2024(11): 1982-1993 .
      13. 顾菲. 适合吴江区生态养殖业发展道路的探索与研究. 新农民. 2024(32): 117-119 .
      14. 冯安学. 分群门技术在大型牧场中应用的前提条件与生产价值. 中国乳业. 2024(11): 35-39+44 .
      15. 桑士舟,姚国胜,刘金,樊惠超,齐永悦,杨培胜. 果园生态养鹅智能化配套设施建设. 家禽科学. 2024(12): 53-55 .
      16. 吕恩利,何欣源,罗毅智,王飞仁,夏晶晶,吴凡,曾志雄. 哺乳母猪智能饲喂物联网系统设计. 华南农业大学学报. 2023(01): 57-64 . 本站查看
      17. 肖德琴,毛远洋,刘又夫,招胜秋,闫志广,王文策,谢青梅. 我国家禽工厂化养殖技术发展现状与趋势. 华南农业大学学报. 2023(01): 1-12+191 . 本站查看
      18. 吕恩利,颜彬,王昱,曾志雄,王亮,孙超,黄涵. 畜禽舍末端水喷淋废气处理系统的颗粒物净化性能分析与优化. 华南农业大学学报. 2023(02): 296-303 . 本站查看
      19. 晏志勋,栾汝朋,张冰,曾另超,刘华贵,刘新,初芹. 种鸡体重智能采集与人工称重的对比. 中国家禽. 2023(02): 121-124 .
      20. 赵铎,周桂霞,赵胜雪. 黑龙江智慧农业知识图谱分析:科学文献计量论述. 农机使用与维修. 2023(03): 27-30 .
      21. 何小敏. 新农科背景下动物生产类专业人才培养提升机制研究——以华南农业大学-温氏集团产业学院为例. 安徽农业科学. 2023(05): 271-273 .
      22. 杨惠永,高彦玉,韩颖思,罗土玉. 生猪养殖装备与信息技术融合发展现状与建议. 现代农业装备. 2023(02): 9-16 .
      23. 王子权,杨珂凡,李蕾蕾,刘杰,刘玉梅. 动物疫病风险对规模猪场数智技术应用的影响. 中国农业资源与区划. 2023(04): 65-72 .
      24. 唐瑜嵘,沈明霞,薛鸿翔,陈金鑫. 人工智能技术在畜禽养殖业的发展现状与展望. 智能化农业装备学报(中英文). 2023(01): 1-16 .
      25. 韦引超,高彦玉,周琼,钟伟朝,罗土玉. 基于畜禽品种选育的数据管理系统设计与实现. 现代农业装备. 2023(03): 70-76+99 .
      26. 张晶. 中国式现代畜牧强国建设:战略谋划与实现路径. 饲料研究. 2023(11): 187-190 .
      27. 刘钟涛,何为凯,徐震,徐响,高翔. 家禽智能养殖系统的设计与实现. 中国禽业导刊. 2023(08): 42-49 .
      28. 温东源,黄培强,林展鹏,彭俊杰,钟沈伟,李焱坭. 作用于雏鸡养殖的鸡舍设计方案研究. 装备制造技术. 2023(06): 279-282 .
      29. 袁正东,王阳,李保明. 单栋20万只叠层笼养蛋鸡舍夏季环境监测评估及建议. 中国家禽. 2022(07): 70-76 .
      30. 欧阳安,崔涛,林立. 智能农机装备产业现状及发展建议. 科技导报. 2022(11): 55-66 .
      31. 黎煊,帅永辉,刘小磊,喻梦媛,马丽娜,郑红亚,刘洋. 自锁式小群妊娠母猪智能饲喂机构设计与试验. 农业工程学报. 2022(13): 38-46 .
      32. 王珑翰,张良,高建波,李辉,孙霞,李明. 蛋鸡健康监测和行为识别及死鸡移除系统研究进展. 中国家禽. 2022(10): 83-88 .
      33. 张燕军,孙晨,王硕,刘绍贵,苏伟. 家禽智慧养殖从业人员继续教育模式调查分析. 中国农机化学报. 2022(12): 215-220 .
      34. 刘立安,白刚,张勇,青格勒图,永荣,韩彩霞,周伟. 智慧养殖在羊养殖产业中的应用效果. 农业工程技术. 2022(35): 68+70 .
      35. 张敬杨,谢佳伟,梁宇涛,刘建勇,李东明. 畜禽养殖清粪技术进展及发展建议. 河北农机. 2021(12): 109-110 .

      Other cited types(18)

    Catalog

      Article views (490) PDF downloads (983) Cited by(53)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return