Citation: | FU Xiao, WEI Xiaoli, YAN Shichao, et al. Status and prospect of research on intelligent monitoring of breeding environment in livestock barns[J]. Journal of South China Agricultural University, 2024, 45(5): 672-684. DOI: 10.7671/j.issn.1001-411X.202405022 |
The occurrence and spread of livestock diseases are closely related to the breeding environment. Achieving accurate perception and intelligent regulation of the environmental information of the barn is the key to improving animal health and production performance, which is of great significance to enhance the high-quality development and transformation of livestock industry in China. Starting from four aspects including the indicator system of the livestock barn breeding environment, accurate perception technology and methods, environment optimization control strategy and comfort assessment, this paper introduces the environmental indicators affecting the livestock health, livestock barn breeding environment monitoring equipment, wireless data transmission optimization technology, and elaborates on the research of environmental data prediction models and distribution laws. It also focuses on analyzing the research and development status of optimization design of livestock barn control equipment, multi-environmental parameter regulation and control, and environmental comfort assessment models, etc. Finally, it summarizes the problems existing in the current application of intelligent monitoring of livestock barn environment and looks forward to the future development direction of intelligent monitoring of farming environment, with the aim of providing references for the comprehensive development of intelligent animal husbandry and improvement of production efficiency in our country.
[1] |
中华人民共和国农业农村部. 《“十四五”全国农业农村信息化发展规划》[EB/OL]. (2022-03-09). https://www.moa.gov.cn/xw/bmdt/202203/t20220309_6391341.htm?eqid=b30f5dcc0006fdd20000000264367dd1.
|
[2] |
FOURNEL S, ROUSSEAU A N, LABERGE B. Rethinking environment control strategy of confined animal housing systems through precision livestock farming[J]. Biosystems Engineering, 2017, 155: 96-123. doi: 10.1016/j.biosystemseng.2016.12.005
|
[3] |
熊本海, 杨振刚, 杨亮, 等. 中国畜牧业物联网技术应用研究进展[J]. 农业工程学报, 2015, 31(S1): 237-246. doi: 10.3969/j.issn.1002-6819.2015.z1.028
|
[4] |
李保明, 王阳, 郑炜超, 等. 畜禽养殖智能装备与信息化技术研究进展[J]. 华南农业大学学报, 2021, 42(6): 18-26. doi: 10.7671/j.issn.1001-411X.202107050
|
[5] |
QI F, ZHAO X D, SHI Z X, et al. Environmental factor detection and analysis technologies in livestock and poultry houses: A review[J]. Agriculture, 2023, 13(8): 1489. doi: 10.3390/agriculture13081489
|
[6] |
TURNPENNY J R, WATHES C M, CLARK J A, et al. Thermal balance of livestock: 2. Applications of a parsimonious model[J]. Agricultural and Forest Meteorology, 2000, 101(1): 29-52. doi: 10.1016/S0168-1923(99)00157-4
|
[7] |
严格齐, 李浩, 施正香, 等. 奶牛热应激指数的研究现状及问题分析[J]. 农业工程学报, 2019, 35(23): 226-233. doi: 10.11975/j.issn.1002-6819.2019.23.028
|
[8] |
李林贵, 陈翔宇, 阿不夏合满·穆巴拉克, 等. 反刍动物冷应激作用机理及其调控技术研究进展[J]. 饲料研究, 2024(6): 148-153
|
[9] |
汪开英, 苗香雯, 崔绍荣, 等. 中国东南地区猪舍夏季降温效果的试验研究[J]. 农业机械学报, 2002(3): 80-83. doi: 10.3969/j.issn.1000-1298.2002.03.025
|
[10] |
汪开英, 苗香雯, 崔绍荣, 等. 猪舍环境温湿度对育成猪的生理及生产指标的影响[J]. 农业工程学报, 2002, 18(1): 99-102. doi: 10.3321/j.issn:1002-6819.2002.01.026
|
[11] |
YAN G, SHI Z, CUI B, et al. Developing a new thermal comfort prediction model and web-based application for heat stress assessment in dairy cows[J]. Biosystems Engineering, 2022, 214: 72-89. doi: 10.1016/j.biosystemseng.2021.12.006
|
[12] |
MADER T, DAVIS M, GAUGHAN J B, et al. Wind speed and solar radiation adjustments for the temperature-humidity index[C]//16th Conference on Biometeorology and Aerobiology. Vancouver, BC, Canada: American Meteorological Society, 2004: 36-42.
|
[13] |
臧强, 李保明, 施正香, 等. 规模化羊场羊舍夏季环境与小尾寒羊的行为观察[J]. 农业工程学报, 2005, 21(9): 183-185. doi: 10.3321/j.issn:1002-6819.2005.09.040
|
[14] |
鲁煜建, 王朝元, 赵浩翔, 等. 东北地区奶牛夏季热应激对其行为和产奶量的影响[J]. 农业工程学报, 2018, 34(16): 225-231. doi: 10.11975/j.issn.1002-6819.2018.16.029
|
[15] |
PETERS R, CHAPIN L, EMERY R, et al. Milk yield, feed intake, prolactin, growth hormone, and glucocorticoid response of cows to supplemented light[J]. Journal of Dairy Science, 1981, 64(8): 1671-1678. doi: 10.3168/jds.S0022-0302(81)82745-2
|
[16] |
DAHL G, BUCHANAN B, TUCKER H, et al. Photoperiodic effects on dairy cattle: A review[J]. Journal of Dairy Science, 2000, 83(4): 885-893. doi: 10.3168/jds.S0022-0302(00)74952-6
|
[17] |
MUTHURAMALINGAM P, KENNEDY A, BERRY R, et al. Plasma melatonin and insulin-like growth factor-1 responses to dim light at night in dairy heifers[J]. Journal of Pineal Research, 2006, 40(3): 225-229. doi: 10.1111/j.1600-079X.2005.00303.x
|
[18] |
TUCKER C, ROGERS A, VERKERK G A, et al. Effects of shelter and body condition on the behaviour and physiology of dairy cattle in winter[J]. Applied Animal Behaviour Science, 2007, 105(1/2/3): 1-13. doi: 10.1016/j.applanim.2006.06.009
|
[19] |
JENTSCH W, PIATKOWSKI B, DERNO M. Relationship between carbon dioxide production and performance in cattle and pigs[J]. Archives Animal Breeding, 2009, 52(5): 485-496. doi: 10.5194/aab-52-485-2009
|
[20] |
SANCHIS E, CALVET S, DEL PRADO A, et al. A meta-analysis of environmental factor effects on ammonia emissions from dairy cattle houses[J]. Biosystems Engineering, 2019, 178: 176-183. doi: 10.1016/j.biosystemseng.2018.11.017
|
[21] |
WU W, ZHANG G, KA P. Ammonia and methane emissions from two naturally ventilated dairy cattle buildings and the influence of climatic factors on ammonia emissions[J]. Atmospheric Environment, 2012, 61: 232-243. doi: 10.1016/j.atmosenv.2012.07.050
|
[22] |
汪开英, 戴圣炎, 王玲娟. 畜禽场空气悬浮颗粒物污染与其监控技术研究进展[J]. 农业机械学报, 2017, 48(6): 232-241.
|
[23] |
汪开英, 代小蓉. 畜禽场空气污染对人畜健康的影响[J]. 中国畜牧杂志, 2008, 44(10): 32-35.
|
[24] |
CAMBRA-LÓPEZ M L, AARNINK A, ZHAO Y, et al. Airborne particulate matter from livestock production systems: A review of an air pollution problem[J]. Environmental Pollution, 2010, 158(1): 1-17. doi: 10.1016/j.envpol.2009.07.011
|
[25] |
BUCZINSKI S, ACHARD D, TIMSIT E. Effects of calfhood respiratory disease on health and performance of dairy cattle: A systematic review and meta-analysis[J]. Journal of Dairy Science, 2021, 104: 8214-8227. doi: 10.3168/jds.2020-19941
|
[26] |
代小蓉, NI J, 潘乔纳, 等. 华东地区典型保育猪舍温湿度和空气质量监测[J]. 农业机械学报, 2016, 47(7): 315-322. doi: 10.6041/j.issn.1000-1298.2016.07.043
|
[27] |
汪开英, 李开泰, 李王林娟, 等. 保育舍冬季湿热环境与颗粒物CFD模拟研究[J]. 农业机械学报, 2017, 48(9): 270-278. doi: 10.6041/j.issn.1000-1298.2017.09.034
|
[28] |
FERRARI S, PICCININI R, SILVA M, et al. Cough sound description in relation to respiratory diseases in dairy calves[J]. Preventive Veterinary Medicine, 2010, 96(3/4): 276-280. doi: 10.1016/j.prevetmed.2010.06.013
|
[29] |
ALONSO R S, SITTÓN-CANDANEDO I, GARCÍA Ó, et al. An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario[J]. Ad Hoc Networks, 2020, 98: 102047. doi: 10.1016/j.adhoc.2019.102047
|
[30] |
CHEN C, LIU X. An intelligent monitoring system for a pig breeding environment based on a wireless sensor network[J]. International Journal of Sensor Networks, 2019, 29(4): 275. doi: 10.1504/IJSNET.2019.098559
|
[31] |
张宇, 沈维政, 张译元. 畜禽舍养殖环境智能调控系统应用研究[C]//中国畜牧兽医学会信息技术分会第十届学术研讨会论文集. 北京: 中国畜牧兽医分会, 2015: 66-70.
|
[32] |
周丽萍, 陈志, 苑严伟, 等. 猪舍环境无线传感器网络监控系统研究[J]. 自动化技术与应用, 2016, 35(1): 56-60.
|
[33] |
UMEGA R, RAJA M A. Design and implementation of livestock barn monitoring system[C]//2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT). Coimbatore: IEEE, 2017: 1-6.
|
[34] |
GERMANI L, MECARELLI V, BARUFFA G, et al. An IoT architecture for continuous livestock monitoring using LoRa LPWAN[J]. Electronics, 2019, 8(12): 1435. doi: 10.3390/electronics8121435
|
[35] |
LIU X, HUO C. Research on remote measurement and control system of piggery environment based on LoRa[C]//2017 Chinese Automation Congress (CAC). Jinan: IEEE, 2017: 7016-7019.
|
[36] |
FU X, SHEN W, YIN Y, et al. Remote monitoring system for livestock environmental information based on LoRa wireless ad hoc network technology[J]. International Journal of Agricultural and Biological Engineering, 2022, 15(4): 79-89. doi: 10.25165/j.ijabe.20221504.6708
|
[37] |
SUN H, PALAOAG T, QUAN Q, et al. Design of automatic monitoring and control system for livestock and poultry house environment based on internet of things robot[C]//Proceedings of the 2022 4th Asia Pacific Information Technology Conference. Bangkok, Thailand: ACM, 2022: 224-230.
|
[38] |
邵林. 多传感器数据融合技术在畜禽舍环境监测系统中的应用研究[D]. 保定: 河北农业大学, 2013.
|
[39] |
李永振, 方志伟, 鲁煜建, 等. 大型自然通风奶牛舍空气颗粒物浓度监测方法中测点数和位置优化[J]. 农业工程学报, 2023, 39(9): 201-209. doi: 10.11975/j.issn.1002-6819.202302038
|
[40] |
RAMIREZ B, GAO Y, HOFF S J, et al. Thermal environment sensor array: Part 1 development and field performance assessment[J]. Biosystems Engineering, 2018, 174: 329-340. doi: 10.1016/j.biosystemseng.2018.08.002
|
[41] |
JOO H S, NDEGWA P M, HEBER A J, et al. Particulate matter dynamics in naturally ventilated freestall dairy barns[J]. Atmospheric Environment, 2013, 69: 182-190. doi: 10.1016/j.atmosenv.2012.12.006
|
[42] |
鲁煜建, 方志伟, 李永振, 等. 大型自然通风奶牛舍空气颗粒物浓度监测方法中采样间隔优化[J]. 农业工程学报, 2023, 39(9): 210-216. doi: 10.11975/j.issn.1002-6819.202302037
|
[43] |
郭建军, 韩钤钰, 董佳琦, 等. 基于SSA-PSO-LSTM模型的羊舍相对湿度预测技术[J]. 农业机械学报, 2022, 53(9): 365-373. doi: 10.6041/j.issn.1000-1298.2022.09.037
|
[44] |
SHEN W Z, FU X, WANG R T , et al. A prediction model of NH3 concentration for swine house in cold region based on empirical mode decomposition and elman neural network [J]. Information Processing in Agriculture, 2019, 6(2): 297-305.
|
[45] |
RODRIGUEZ M R, BESTEIRO R, ORTEGA J A, et al. Evolution and neural network prediction of CO2 emissions in weaned piglet farms[J]. Sensors, 2022, 22(8): 2910. doi: 10.3390/s22082910
|
[46] |
王鹏鹏. 基于CFD的北方寒冷地区猪舍通风环境研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
|
[47] |
邓书辉, 施正香, 范淋佳, 等. 基于CFD的开放式牛舍扰流风机安装参数优化[J]. 农业机械学报, 2013, 44(12): 269-274. doi: 10.6041/j.issn.1000-1298.2013.12.045
|
[48] |
邓书辉, 施正香, 李保明, 等. 挡风板对低屋面横向通风牛舍内空气流场影响的PIV测试[J]. 农业工程学报, 2019, 35(1): 188-194. doi: 10.11975/j.issn.1002-6819.2019.01.023
|
[49] |
丁涛, 宏帅, 施正香, 等. 缓解奶牛热应激的喷淋水滴特性试验[J]. 农业机械学报, 2016, 47(7): 323-331. doi: 10.6041/j.issn.1000-1298.2016.07.044
|
[50] |
李伟, 李保明, 施正香, 等. 夏季水冷式猪床的降温效果及其对母猪躺卧行为的影响[J]. 农业工程学报, 2011, 27(11): 242-246. doi: 10.3969/j.issn.1002-6819.2011.11.046
|
[51] |
杜欣怡, 仲玉婷, 施正香, 等. 奶牛卧床冷水管局部降温系统应用效果分析[J]. 农业工程学报, 2021, 37(15): 197-203. doi: 10.11975/j.issn.1002-6819.2021.15.024
|
[52] |
赵婉莹, 许立新, 王朝元, 等. 不同地面形式自然通风奶牛舍冬季温室气体和氨气排放量[J]. 中国农业大学学报, 2020, 25(1): 142-151. doi: 10.11841/j.issn.1007-4333.2020.01.16
|
[53] |
赵婉莹, 张琦, 施正香. 复合保温卷帘改善寒区开放式牛舍冬季热湿环境[J]. 农业工程学报, 2018, 34(21): 215-221. doi: 10.11975/j.issn.1002-6819.2018.21.026
|
[54] |
王启超, 曹哲, 施正香. 东北寒区奶牛舍屋顶烟囱风机应用效果研究[J]. 中国奶牛, 2017(1): 42-46.
|
[55] |
李伟, 林保忠, 刘作华, 等. 水冷式猪床冬季保温措施对妊娠母猪小群饲养的影响[J]. 农业工程学报, 2012, 28(22): 222-226. doi: 10.3969/j.issn.1002-6819.2012.22.031
|
[56] |
鲁煜建, 张璐, 王朝元, 等. 东北地区奶牛舍围护结构的低限热阻计算与验证[J]. 农业工程学报, 2019, 35(21): 216-222. doi: 10.11975/j.issn.1002-6819.2019.21.026
|
[57] |
曹哲, 施正香, 安欣, 等. 基于热成像技术的牛舍围护结构传热阻测试方法[J]. 农业工程学报, 2017, 33(24): 235-241. doi: 10.11975/j.issn.1002-6819.2017.24.031
|
[58] |
SEEDORF J, HARTUNG J, SCHRODER M, et al. A survey of ventilation rates in livestock buildings in Northern Europe[J]. Journal of Agricultural Engineering Research, 1998, 70(1): 39-47. doi: 10.1006/jaer.1997.0274
|
[59] |
SAHA C K, AMMON C, BERG W, et al. The effect of external wind speed and direction on sampling point concentrations, air change rate and emissions from a naturally ventilated dairy building[J]. Biosystems Engineering, 2013, 114(3): 267-278. doi: 10.1016/j.biosystemseng.2012.12.002
|
[60] |
丁露雨, 鄂雷, 李奇峰, 等. 畜舍自然通风理论分析与通风量估算[J]. 农业工程学报, 2020, 36(15): 189-201. doi: 10.11975/j.issn.1002-6819.2020.15.024
|
[61] |
齐飞, 施正香, 黄金军, 等. 不同气候区猪舍最大通风量确定及湿帘降温系统应用效果[J]. 农业工程学报, 2021, 37(22): 202-209. doi: 10.11975/j.issn.1002-6819.2021.22.023
|
[62] |
BLANES V, PEDERSEN S. Ventilation flow in pig houses measured and calculated by carbon dioxide, moisture and heat balance equations[J]. Biosystems Engineering, 2005, 92(4): 483-493. doi: 10.1016/j.biosystemseng.2005.09.002
|
[63] |
仲玉婷, 施正香, 赵婉莹, 等. 寒区低屋面横向通风牛舍建筑和环境设计初探[J]. 中国奶牛, 2019(11): 51-55.
|
[64] |
BLEIZGYS R, BAGDONIENE I. Control of ammonia air pollution through the management of thermal processes in cowsheds[J]. Science of the Total Environment, 2016, 568: 990-997. doi: 10.1016/j.scitotenv.2016.05.017
|
[65] |
张世功. 基于温湿度指数的牛舍喷淋降温系统的控制[D]. 福州: 福建农林大学, 2005.
|
[66] |
GAUTAM K R, ZHANG G, LANDWEHR N, et al. Machine learning for improvement of thermal conditions inside a hybrid ventilated animal building[J]. Computers and Electronics in Agriculture, 2021, 187(1): 106259.
|
[67] |
CAGLAYAN N, ERTEKINB C. Intelligent control based fuzzy logic for climate control of livestock buildings[C]//CIGR-AgEng Conference. Aarhus, Denmark: International Society of Agricultural Engineering, 2016: 1-6.
|
[68] |
付晓. 多因素协同的奶牛冷应激评估及冬季舍饲环境智能调控方法研究[D]. 哈尔滨: 东北农业大学, 2023.
|
[69] |
王校帅. 基于CFD的畜禽舍热环境模拟及优化研究[D]. 杭州: 浙江大学, 2014.
|
[70] |
NORTON T, GRANT J, FALLON R, et al. Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics[J]. Biosystems Engineering, 2009, 103(1): 78-99. doi: 10.1016/j.biosystemseng.2009.02.007
|
[71] |
BECKER C A, AGHALARI A, MARUFUZZAMAN M, et al. Predicting dairy cattle heat stress using machine learning techniques[J]. Journal of Dairy Science, 2021, 104(1): 501-524. doi: 10.3168/jds.2020-18653
|
[72] |
FU X, ZHANG Y, ZHANG Y G, et al. Research and application of a new multilevel fuzzy comprehensive evaluation method for cold stress in dairy cows[J]. Journal of Dairy Science, 2022, 105(11): 9137-9161.
|
[73] |
TSAI Y C, HSU J T, DING S T, et al. Assessment of dairy cow heat stress by monitoring drinking behaviour using an embedded imaging system[J]. Biosystems Engineering, 2020, 199: 97-108. doi: 10.1016/j.biosystemseng.2020.03.013
|
[74] |
赵晓洋. 基于动物发声分析的畜禽舍环境评估[D]. 杭州: 浙江大学, 2019.
|
[75] |
NASIRAHMADI A, HENSEL O, EDWARDS S A, et al. A new approach for categorizing pig lying behaviour based on a delaunay triangulation method[J]. Animal, 2017, 11(1): 131-139. doi: 10.1017/S1751731116001208
|
[76] |
李胜利, 姚琨, 曹志军, 等. 2022年奶牛产业技术发展报告[J]. 中国畜牧杂志, 2023, 59(3): 316-322.
|
[1] | YANG Taijiao, ZHANG Wei, LUO Jianmei, LI Qing, NIE Shanshan, LIAO Shimei, FU Tao, YAN Xiaohui. Antifungal activity of Mikania micrantha extract against Magnaporthe oxyzae[J]. Journal of South China Agricultural University, 2025, 46(1): 81-88. DOI: 10.7671/j.issn.1001-411X.202311015 |
[2] | ZHAO Chuanchao, CONG Sen, LIANG Siyi, XIE Huabin, LU Wenyu, XIAO Wuming, HUANG Ming, GUO Tao, WANG Jiafeng. Development and application of KASP marker for rice blast resistance gene Pi2[J]. Journal of South China Agricultural University, 2023, 44(5): 725-734. DOI: 10.7671/j.issn.1001-411X.202304026 |
[3] | XIAO Wu-ming, SUN Da-yuan, ZHANG Jing-xin, WANG Hui, GUO Tao, LIU Yong-zhu, ZHU Xiao-yuan, YANG Qi-yun, CHEN Zhi-qiang. Evaluation on the Rice Blast Resistance of Three Space-Induced Rice Mutant Lines and Analysis of the Resistant Heredity[J]. Journal of South China Agricultural University, 2012, 33(3): 273-276. DOI: 10.7671/j.issn.1001-411X.2012.03.001 |
[4] | LIU Jun-bo, GAO Chen, GAO Jie, MA Jing-yong, CHANG Hai-bo. Effects of Silicon on the Ultrastructure of Oryza sativa Leaves Infected by Magnaporthe grisea[J]. Journal of South China Agricultural University, 2012, 33(1): 40-43. DOI: 10.7671/j.issn.1001-411X.2012.01.008 |
[5] | ZHANG Yao-mou,CHEN Jun,XU Han-hong,JIN Gui-yu. Synthesis of 1- ( 1 H- 1,2,4-triazolyl) - 1- cycloalkyl- (sub) phenylmethanol[J]. Journal of South China Agricultural University, 2005, 26(1): 67-69. DOI: 10.7671/j.issn.1001-411X.2005.01.018 |
[6] | WANG Hui~1,CHEN Zhi-qiang~1,YANG Qi-yun~2,LI Li~1,HONG Yan-bin~1,ZHANG Jian-guo~1,ZHU Xiao-yuan~2,LIN Pei-zhen~2. Variation of major agronomic characters and resistance to blast of mutant lines by space mutation in Oryza sativa[J]. Journal of South China Agricultural University, 2004, 25(4): 1-5. DOI: 10.7671/j.issn.1001-411X.2004.04.001 |
[7] | Identification and Evaluation of the Rice Resistance to Magnaporthe grisea Populations[J]. Journal of South China Agricultural University, 2003, 24(2): 30-33. DOI: 10.7671/j.issn.1001-411X.2003.02.009 |
[8] | CHEN Jin-ding,LIAO Ming,XIN Chao-an. Sequence Analysis of Fusion Protein Gene of the Chinese Strain F48E9 of Newcastle Disease Virus[J]. Journal of South China Agricultural University, 2000, (3): 75-77. DOI: 10.7671/j.issn.1001-411X.2000.03.020 |
[9] | Pan Ruqian,Kang Bijian,Huang Jianmin,Xu Qifeng. Virulence Specialization of Rice Blast Fungus[J]. Journal of South China Agricultural University, 1999, (3): 15-18. |
[10] | Chen Zhiqiang. INVESTIGATIONS ON THE MECHANISM OF RESISTANCE TO RICE BLAST DISEASE[J]. Journal of South China Agricultural University, 1989, (3): 82-91. |
1. |
王赫川,崔卫国,张涵,李天峰,尹国安,郭庆,李井春. α-酮戊二酸对湖羊精子质量与血浆生化指标的影响. 饲料工业. 2024(11): 55-61 .
![]() | |
2. |
张启新,周游,黄飞. 谷氨酰胺酶抑制剂CB-839介导T细胞效应抑制肺癌细胞中αKGA、Gln转化的作用机制. 国际检验医学杂志. 2023(05): 582-587 .
![]() |