• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
DAI Zehan, ZHENG Zheng, HUANG Lishu, et al. Recognition of Huanglongbing symptom based on deep convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(4): 111-119. DOI: 10.7671/j.issn.1001-411X.201909031
Citation: DAI Zehan, ZHENG Zheng, HUANG Lishu, et al. Recognition of Huanglongbing symptom based on deep convolutional neural network[J]. Journal of South China Agricultural University, 2020, 41(4): 111-119. DOI: 10.7671/j.issn.1001-411X.201909031

Recognition of Huanglongbing symptom based on deep convolutional neural network

More Information
  • Received Date: September 16, 2019
  • Available Online: May 17, 2023
  • Objective 

    To explore the capability of deploying deep learning to the detection of Huanglongbing (HLB) symptom inCitrus spp., and evaluate the classification accuracies of the classifiers.

    Method 

    Two-class classifiers(I-2-C and M-2-C) and eight-class classifiers(I-8-C and M-8-C) were constructed using images of diseased leaves caused by HLB/non-HLB and healthy leaves based on convolutional neural networks and transfer learning.

    Result 

    The overall classification performance of M-8-C stood out in all classifiers with accuracy of 93.7%, implying great capability in deep convolutional neural networks for classifying HLB symptoms. The mean F1 socres of I-8-C and M-8-C were 77.9% and 88.4% respectively, which were higher than those of I-2-C(56.3%) and M-2-C(52.5%). This indicated that subtyping symptoms could help improve the recognition ability of models. The slightly higher mean F1 score of M-8-C compared with I-8-C indicated that the eight-class model based on MobileNetV1 had better performance than the one based on InceptionV3. An optimized model, namely M-8f-C, was developed based on M-8-C and was successfully mounted on mobile phone. The field tests showed that M-8f-C was of decent performance under field conditions.

    Conclusion 

    Classifier based on deep learning and transfer learning has high accuracy for recognizing HLB symptom leaves.

  • [1]
    林孔湘. 柑桔黄梢(黄龙)病研究Ⅰ: 病情调查[J]. 植物病理学报, 1956, 2(1): 1-11.
    [2]
    DENG X, LAN Y, HONG T, et al. Citrus greening detection using visible spectrum imaging and C-SVC[J]. Comput Electron Agr, 2016, 130(2016): 177-183.
    [3]
    GARCIA-RUIZ F, SANKARAN S, MAJA J M, et al. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees[J]. Comput Electron Agr, 2013, 91: 106-115. doi: 10.1016/j.compag.2012.12.002
    [4]
    MISHRA A, KARIMI D, EHSANI R, et al. Evaluation of an active optical sensor for detection of Huanglongbing (HLB) disease[J]. Biosyst Eng, 2011, 110(3): 302-309. doi: 10.1016/j.biosystemseng.2011.09.003
    [5]
    MISHRA A, KARIMI D, EHSANI R, et al. Identification of citrus greening (Hlb) using a vis-nir spectroscopy technique[J]. T ASABE, 2012, 55(2): 711-720. doi: 10.13031/2013.41369
    [6]
    SANKARAN S, MISHRA A, MAJA J M, et al. Visible-near infrared spectroscopy for detection of Huanglongbing in citrus orchards[J]. Comput Electron Agr, 2011, 77(2): 127-134. doi: 10.1016/j.compag.2011.03.004
    [7]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Commun ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [8]
    ZHANG Y C, KAGEN A C. Machine learning interface for medical image analysis[J]. J Digit Imaging, 2017, 30(5): 615-621. doi: 10.1007/s10278-016-9910-0
    [9]
    ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. doi: 10.1038/nature21056
    [10]
    LEE H, KIM K G. Applying deep learning in medical images: The case of bone age estimation[J]. Healthc Inform Res, 2018, 24(1): 86-92. doi: 10.4258/hir.2018.24.1.86
    [11]
    LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88. doi: 10.1016/j.media.2017.07.005
    [12]
    GHOSAL S, BLYSTONE D, SINGH A K, et al. An explainable deep machine vision framework for plant stress phenotyping[J]. Proc Natl Acad Sci USA, 2018, 115(18): 4613-4618. doi: 10.1073/pnas.1716999115
    [13]
    TAPAS A. Transfer learning for image classification and plant phenotyping[J]. Int J Res Appl Sci Eng Technol, 2016, 5(11): 2664-2668.
    [14]
    SLADOJEVIC S, ARSENOVIC M, CULIBRK A A D, et al. Deep neural networks based recognition of plant diseases by leaf image classification[J]. Comput Intel Neurosc, 2016: 3289801.
    [15]
    ZHANG K, WU Q, LIU A, et al. Can deep learning identify tomato leaf disease?[J]. Advances in Multimedia, 2018, 2018: 1-10.
    [16]
    RAMCHARAN A, BARANOWSKI K, MCCLOSKEY P, et al. Deep learning for image-based cassava disease detection[J]. Front Plant Sci, 2017, 8: 1-7.
    [17]
    CHOI D, LEE W, SCHUELLER J K, et al. A precise fruit inspection system for Huanglongbing and other common citrus defects using GPU and deep learning technologies[C]// ISPA. Proceedings of 13th International Conference on Precision Agriculture, St Louis, Missouri: ISPA, 2016, 1-6.
    [18]
    MOHANTY S P, HUGHES D P, SALATHE M. Using deep learning for image-based plant disease detection[J]. Front Plant Sci, 2016, 7: 1-7.
    [19]
    LI W, HARTUNG J S, LEVY L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing[J]. J Microbiol Meth, 2006, 66(1): 104-115. doi: 10.1016/j.mimet.2005.10.018
    [20]
    FAWCETT T. An introduction to ROC analysis[J]. Pattern Recogn Lett, 2006, 27(8): 861-874. doi: 10.1016/j.patrec.2005.10.010
    [21]
    DENG X, LAN Y, XING X, et al. Citrus huanglongbing detection based on image feature extraction and two-stage back propagation neural network modeling[J]. Int J Agr Biol Eng, 2016, 9(6): 20-26.
    [22]
    李俭川, 秦国军, 温熙森, 等. 神经网络学习算法的过拟合问题及解决方法[J]. 振动、测试与诊断, 2002, 22(4): 260-264. doi: 10.3969/j.issn.1004-6801.2002.04.003
    [23]
    陶砾, 杨朔, 杨威. 深度学习的模型搭建及过拟合问题的研究[J]. 计算机时代, 2018(2): 14-21.
    [24]
    REINKING O A. Diseases of economic plants in southern China[J]. Philipp Agric, 1919, 8: 109-135.
    [25]
    TU C. Notes on disease of economic plants in South China[J]. Lingnan Science Journal, 1932, 11: 489-504.
    [26]
    吴定尧. 柑橘黄龙病及综合防治[M]. 广州: 广东科技出版社. 2010: 12-20.
  • Cited by

    Periodical cited type(11)

    1. 池美香,陈韶萍,黄婷,陈世雄,梁勇,邱荣洲. 柑橘黄龙病田间症状识别图像数据集. 中国科学数据(中英文网络版). 2025(01): 52-61 .
    2. 殷献博,邓小玲,兰玉彬,陈欣. 基于改进YOLOX-Nano算法的柑橘梢期长势智能识别. 华南农业大学学报. 2023(01): 142-150 . 本站查看
    3. 刘小刚,李荣梅,范诚,杨启良,赵璐. 基于语义分割的芒果表皮缺陷识别. 华南农业大学学报. 2023(01): 134-141 . 本站查看
    4. 熊梦园,詹炜,桂连友,刘虎,王佩文,韩涛,李伟豪,孙泳. 基于ResNet模型的玉米叶片病害检测与识别. 江苏农业科学. 2023(08): 164-170 .
    5. 彭旭,饶元,乔焰. 基于宽度卷积神经网络的异常农情数据检测方法. 华南农业大学学报. 2022(02): 113-121 . 本站查看
    6. 范世达,马伟荣,姜文博,张辉,王金振,李琦,何鹏博,彭磊,黄兆波. 基于深度学习的柑橘黄龙病远程诊断技术初探. 中国果树. 2022(04): 76-79+86+133 .
    7. 胡政,张艳,尚静,张楷文. 高光谱图像在农作物病害检测识别中的研究进展. 江苏农业科学. 2022(08): 49-55 .
    8. 曾伟辉,陈亚飞,胡根生,鲍文霞,梁栋. SMS和双向特征融合的自然背景柑橘黄龙病检测技术. 农业机械学报. 2022(11): 280-287 .
    9. 陆健强,林佳翰,黄仲强,王卫星,邱洪斌,杨瑞帆,陈平福. 基于Mixup算法和卷积神经网络的柑橘黄龙病果实识别研究. 华南农业大学学报. 2021(03): 94-101 . 本站查看
    10. 樊湘鹏,周建平,许燕. 基于改进区域卷积神经网络的田间玉米叶部病害识别. 华南农业大学学报. 2020(06): 82-91 . 本站查看
    11. 何建群,张润,杨庆文,彭家郁,王凌燕,任丽英. 柑桔黄龙病和木虱发生消长规律及综合防控配套技术. 云南农业科技. 2020(S1): 36-40 .

    Other cited types(9)

Catalog

    Article views (1239) PDF downloads (1404) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return