• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LIU Yufeng, JI Changying, TIAN Guangzhao, et al. Obstacle avoidance path planning for autonomous navigation agricultural machinery[J]. Journal of South China Agricultural University, 2020, 41(2): 117-125. DOI: 10.7671/j.issn.1001-411X.201909010
Citation: LIU Yufeng, JI Changying, TIAN Guangzhao, et al. Obstacle avoidance path planning for autonomous navigation agricultural machinery[J]. Journal of South China Agricultural University, 2020, 41(2): 117-125. DOI: 10.7671/j.issn.1001-411X.201909010

Obstacle avoidance path planning for autonomous navigation agricultural machinery

More Information
  • Received Date: September 05, 2019
  • Available Online: May 17, 2023
  • Objective 

    To realize static obstacle avoidance of autonomous navigation agricultural machinery when it operates in the field.

    Method 

    Two path planning algorithms of obstacle avoidance were proposed under known working environment. The single obstacle avoidance algorithm was proposed based on the movement rule of agricultural machinery and according to the position and the size of the obstacle. On the basis of the single obstacle avoidance algorithm, according to the size of safe driving area, the double/multiple obstacles avoidance algorithm was proposed according to left and right obstacle avoiding strategies.

    Result 

    When the single obstacle was located in different locations and the speed of agricultural machinery was 0.3 m·s−1, compared with L algorithm, driving path reduced by 35%, 26%; Accumulative error of driving path reduced by 53%, 82%; Variance reduced by 64%, 66%. When the driving speed was 0.5 m·s−1, driving path reduced by 38%, 22%; Accumulative error reduced by 66%, 26%; Variance reduced by 41%, 71%. When the speed of agricultural machinery was 0.3 and 0.5 m·s−1 under the condition of multiple obstacles, accumulative tracking errors of driving path was 9.99, 4.13 m, and variances were 0.022 1, 0.027 0 m2, respectively.

    Conclusion 

    The proposed algorithm has some advantages in driving path, accumulative error of driving path, stability of theoretical path tracking and adaptability to road condition.

  • [1]
    姬长英, 周俊. 农业机械导航技术发展分析[J]. 农业机械学报, 2014, 45(9): 44-54. doi: 10.6041/j.issn.1000-1298.2014.09.008
    [2]
    GAN-MOR S, CLARK R L, UPCHURCH B L. Implement lateral position accuracy under RTK-GPS tractor guidance[J]. Comput Electron Agric, 2007, 59(1/2): 31-38.
    [3]
    TIMO O, JUHA B. Guidance system for agricultural tractor with four wheel steering[J]. IFAC Proceed Vol, 2013, 46(4): 124-129. doi: 10.3182/20130327-3-JP-3017.00030
    [4]
    KARIMI D, HENRY J, MANN D D. Effect of using GPS autosteer guidance systems on the eye-glance behavior and posture of tractor operators[J]. J Agric Saf Health, 2012, 18(4): 309-318. doi: 10.13031/2013.42332
    [5]
    刘柯楠, 吴普特, 朱德兰, 等. 太阳能渠道式喷灌机自主导航研究[J]. 农业机械学报, 2016, 47(9): 141-146. doi: 10.6041/j.issn.1000-1298.2016.09.021
    [6]
    CORDESSES L, CARIOU C, BERDUCAT M. Combine harvester control using real time kinematic GPS[J]. Precis Agric, 2000, 2(2): 147-161. doi: 10.1023/A:1011473630247
    [7]
    CHOI J, YIN X, YANG L, et al. Development of a laser scanner-based navigation system for a combine harvester[J]. E A Environment F, 2014, 7(1): 7-13. doi: 10.1016/j.eaef.2013.12.002
    [8]
    张美娜, 吕晓兰, 陶建平, 等. 农用车辆自主导航控制系统设计与试验[J]. 农业机械学报, 2016, 47(7): 42-47. doi: 10.6041/j.issn.1000-1298.2016.07.007
    [9]
    张漫, 项明, 魏爽, 等. 玉米中耕除草复合导航系统设计与试验[J]. 农业机械学报, 2015, 46(S1): 8-14. doi: 10.6041/j.issn.1000-1298.2015.S0.002
    [10]
    谢斌, 李静静, 鲁倩倩, 等. 联合收割机制动系统虚拟样机仿真及试验[J]. 农业工程学报, 2014, 30(4): 18-24. doi: 10.3969/j.issn.1002-6819.2014.04.003
    [11]
    任述光, 谢方平, 王修善, 等. 4LZ-0.8型水稻联合收割机清选装置气固两相分离作业机理[J]. 农业工程学报, 2015, 31(12): 16-22. doi: 10.11975/j.issn.1002-6819.2015.12.003
    [12]
    焦有宙, 田超超, 贺超, 等. 不同工质对大型联合收割机余热回收的热力学性能[J]. 农业工程学报, 2018, 34(5): 32-38. doi: 10.11975/j.issn.1002-6819.2018.05.005
    [13]
    伟利国, 张小超, 汪凤珠, 等. 联合收割机稻麦收获边界激光在线识别系统设计与试验[J]. 农业工程学报, 2017, 33(S1): 30-35.
    [14]
    刘刚, 李笑, 康熙, 等. 基于GNSS的农田平整自动导航路径规划方法[J]. 农业机械学报, 2016, 47(S1): 21-29.
    [15]
    孟志军, 刘卉, 王华, 等. 农田作业机械路径优化方法[J]. 农业机械学报, 2012, 43(6): 147-152. doi: 10.6041/j.issn.1000-1298.2012.06.027
    [16]
    TAÏX M, SOUÈRES P, FRAYSSINET H, et al. Path planning for complete coverage with agricultural machines[M]//Springer-verlag Berlin. Springer tracts in advanced robotics. Berlin: Springer-verlag, 2006.
    [17]
    KANG N K, SON H J, LEE S H. Modified A-star algorithm for modular plant land transportation[J]. J Mech Sci Technol, 2018, 32(12): 5563-5571. doi: 10.1007/s12206-018-1102-z
    [18]
    LE A V, PRABAKARANV, SIVANANTHAMV, et al. Modified A-star algorithm for efficient coverage path planning in tetris inspired self-reconfigurable robot with integrated laser sensor[J]. Sensors, 2018, 18(8). doi: 10.3390/s18082585.
    [19]
    吴麟麟, 杨俊辉, 汪若尘, 等. 基于混合SA算法的智能汽车全局路径规划[J]. 江苏大学学报(自然科学版), 2019, 40(3): 249-254.
    [20]
    刘建华, 杨建国, 刘华平, 等. 基于势场蚁群算法的移动机器人全局路径规划方法[J]. 农业机械学报, 2015, 46(9): 18-27. doi: 10.6041/j.issn.1000-1298.2015.09.003
    [21]
    陈余庆, 李桐训, 于双, 等. 基于势场蚁群算法的机器人全局路径规划[J]. 大连理工大学学报, 2019, 59(3): 316-322. doi: 10.7511/dllgxb201903014
    [22]
    谢永良, 尹建军, 余承超, 等. 轮式AGV沿葡萄园垄道行驶避障导航算法与模拟试验[J]. 农业机械学报, 2018, 49(7): 13-22. doi: 10.6041/j.issn.1000-1298.2018.07.002
    [23]
    殷建军, 董文龙, 梁利华, 等. 复杂环境下农业机器人路径规划优化方法[J]. 农业机械学报, 2019, 50(5): 17-22. doi: 10.6041/j.issn.1000-1298.2019.05.002
    [24]
    TIAN L F, COLLINS C. An effective robot trajectory planning method using a genetic algorithm[J]. Mechatronics, 2003, 14(5): 455-470.
    [25]
    KIM H, KIM B K. Online minimum-energy trajectory planning and control on a straight-line path for three-wheeled omnidirectional mobile robots[J]. IEEE T Ind Electron, 2014, 61(9): 4771-4779. doi: 10.1109/TIE.2013.2293706
    [26]
    GREGORY J, OLIVARES A, STAFFETTI E. Energy-optimal trajectory planning for robot manipulators with holonomic constraints[J]. Syst Control Lett, 2012, 61(2): 279-291. doi: 10.1016/j.sysconle.2011.11.005
    [27]
    LIU C, ZHAO X, DU Y. Research on the static path planning method of small obstacles for automatic navigation of agricultural machinery[C]. IFAC-Papers. Beijing. 2018: 673-677.
  • Related Articles

    [1]ZHAO Gaoyuan, ZHANG Yali, ZHANG Zichao, LI Zhiyong, DENG Jizhong. Monitoring rice bacterial blight based on UAV images of different ground sampling distances (GSD)[J]. Journal of South China Agricultural University, 2025, 46(1): 115-123. DOI: 10.7671/j.issn.1001-411X.202401003
    [2]JIANG Dong, XIAO Maohua, ZHANG Haijun, ZHOU Junbo, ZHU Hong, WANG Xiaochan, CHEN Shuang. Water quality monitoring and grade judgment system based on IGWOPSO-SVM algorithm[J]. Journal of South China Agricultural University, 2023, 44(4): 638-648. DOI: 10.7671/j.issn.1001-411X.202207034
    [3]WANG Xiaotian, WANG Wei, CHEN Jiajun, CHU Chengcai. Long-distance signal transduction of nitrogen and phosphorus in plants[J]. Journal of South China Agricultural University, 2022, 43(6): 78-86. DOI: 10.7671/j.issn.1001-411X.202208058
    [4]DING Youchun, CHEN Liyuan, WANG Denghui, LIU Xiaodong, XU Chunbao, WANG Kaiyang. Design and test of monitoring system for rapeseed sowing quality[J]. Journal of South China Agricultural University, 2021, 42(6): 43-51. DOI: 10.7671/j.issn.1001-411X.202107029
    [5]WAN Xuefen, CUI Jian, YANG Yi, JIANG Xueqin, Sardar Muhammad SOHAIL. Research on transmission measurement system for LoRa wireless underground sensor network[J]. Journal of South China Agricultural University, 2018, 39(3): 118-124. DOI: 10.7671/j.issn.1001-411X.2018.03.018
    [6]LI Qing,LUO Xi-wen,LU Hua-zhong,YANG Jun-zhong. Automotive Hydraulic Automatic Transmission Computer Testing System[J]. Journal of South China Agricultural University, 2007, 28(2): 110-112. DOI: 10.7671/j.issn.1001-411X.2007.02.028
    [7]WANG Jian-wu,XIAO Hong-sheng,ZHANG Li-ming. Application of GPS to Monitoring Dynamics of Reclaiming Coastal Land[J]. Journal of South China Agricultural University, 2000, (2): 1-4. DOI: 10.7671/j.issn.1001-411X.2000.02.001
    [8]COMPARISONS OF CALCULATION METHODS FOR GENETIC DISTANCE IN RAPD ANALYSIS[J]. Journal of South China Agricultural University, 1997, (Z1).
    [9]Li Zuqiang, Liao Shimo ,Wang Guochang. PRIMARY REPORT OF CLUSTERING AND GENETIC DISTANCE ESTIMATION BETWEEN RICE CULTIVARS AND WILD RICE VARIETIES[J]. Journal of South China Agricultural University, 1995, (3): 93-97.
    [10]Zhou Weichuan. ON APPARITION DYNAMIC OF ASPARAGUS LONG BEAN RUST[J]. Journal of South China Agricultural University, 1989, (2): 54-59.
  • Cited by

    Periodical cited type(19)

    1. 钱卫星,郑东. 动态环境监测系统的设计. 集成电路应用. 2024(03): 186-187 .
    2. 陈雄,罗海波. 碳汇渔业贝类养殖监测管理系统的设计与开发. 闽江学院学报. 2024(05): 51-58 .
    3. 罗潜,吉艺宽,李美娣. 基于STM32和ZigBee的水产养殖水质监测系统设计. 仪器仪表用户. 2023(08): 22-26 .
    4. 杨智玲,程玮. 基于无人机遥感技术的渔业养殖池塘水质监测方法. 太原师范学院学报(自然科学版). 2023(02): 35-40 .
    5. 余钱程,管延敏,黄温赟,韦龙,虞嘉晨. 基于STM32与树莓派的养殖水质监测无人艇系统研究. 渔业现代化. 2023(05): 33-42 .
    6. 林盾,怀晓伟,宁睿. 面向电网基建现场的LoRa通信低功耗组网控制技术的优化设计. 自动化应用. 2023(22): 73-75 .
    7. 杨智玲. 无人机技术在水产养殖作业通信系统中的应用. 长江信息通信. 2022(04): 1-3 .
    8. 孔兵,余梅,乔欣. 基于LoRa无线通信的水产养殖水质监测系统设计. 滨州学院学报. 2022(02): 74-80 .
    9. 任晓亮,施羽露,廖河庭,杨晓曦,钱信宇,郑尧,陈家长. 水产环境污染现状及治理策略. 农学学报. 2022(05): 42-46 .
    10. 闫尉深,刘威,刘家俊,李志达. 基于无线技术的隧道积水监测系统设计. 电子设计工程. 2022(14): 137-141 .
    11. 李阳东,漆林,笪亨融,谢洋洋. 基于物联网的近海岸水质监测平台方案设计. 海岸工程. 2022(03): 268-276 .
    12. 康晋. 基于LoRa无线通信的工业机器人远程监控系统设计. 计算机测量与控制. 2022(09): 119-124+132 .
    13. 肖军. 基于无线通信技术的医院信息管理系统设计. 自动化技术与应用. 2022(11): 107-111 .
    14. 巫鹏航,王锦鹏,朱敬宾,郭来功. 基于STM32与LabVIEW的地下水压水温监测系统设计. 长春师范大学学报. 2021(04): 43-47 .
    15. 覃伟锋,郝文杰,莫胜胜,龙应萍,蔡世媚,范嘉晨. 基于云服务的水产养殖水质监测系统. 电子制作. 2021(10): 30-32 .
    16. 胡颖,徐轶群. 基于窄带物联网通信的海洋水质监测系统设计. 广州航海学院学报. 2021(02): 14-19 .
    17. 谭明,曾海涛,王田. 基于无线通信的换流阀冷却塔温度监测系统设计. 电工技术. 2021(12): 8-9+12 .
    18. 颜瑞,王震,李言浩,李哲敏,李娴. 中国农业智能传感器的应用、问题与发展. 农业大数据学报. 2021(02): 3-15 .
    19. 尹航,廖梓渊,徐龙琴,刘双印,曹亮,郭建军. 基于ECharts的对虾产业数据可视化分析平台设计及实现. 现代农业装备. 2021(04): 7-14 .

    Other cited types(12)

Catalog

    Article views (2811) PDF downloads (3622) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return