LIU Fangfang, YANG Xiaohua, ZHANG Fenglin, et al. Effect of dietary supplementation of fish oil on intestinal barrier function in mouse fed with high-fat diet[J]. Journal of South China Agricultural University, 2020, 41(3): 1-8. DOI: 10.7671/j.issn.1001-411X.201908029
    Citation: LIU Fangfang, YANG Xiaohua, ZHANG Fenglin, et al. Effect of dietary supplementation of fish oil on intestinal barrier function in mouse fed with high-fat diet[J]. Journal of South China Agricultural University, 2020, 41(3): 1-8. DOI: 10.7671/j.issn.1001-411X.201908029

    Effect of dietary supplementation of fish oil on intestinal barrier function in mouse fed with high-fat diet

    More Information
    • Received Date: August 22, 2019
    • Available Online: May 17, 2023
    • Objective 

      To investigate the effect of dietary supplementation of fish oil on the barrier function of mouse fed with high-fat diet (HFD).

      Method 

      36 C57BL/6J female mice (4-week-old) were randomly divided into control group (CK), HFD group, and HFD +fish oil group, with 12 mice in each group. Mice in three groups were fed with basal diet, HFD and HFD supplemented with 5% fish oil (iso caloric with HFD), respectively. The experiment lasted for 21 weeks, and the food intake and body weight of mice were measured weekly. During the experiment, intestinal permeability of each mouse was measured, and the fat content and energy in feces were determined. At the end of the experiment, endotoxin levels in serum were detected, and intestinal morphology, the number of intestinal goblet cells, and the expressions of intestinal tight junction proteins and inflammatory factors were examined.

      Result 

      Compared with HFD group, addition of fish oil in diet significantly increased food intake and energy intake, decreased fecal crude fat content and energy excretion, while significantly reduced body weight of mice (P<0.05). In terms of intestinal morphology, compared with HFD group, addition of fish oil significantly increased the ratio of villus height to crypt depth (lV/dC) by 43.1% in mouse jejunum and 67.5% in ileum and the number of goblet cells in ileum villous by 16.7% (P<0.05). Compared with HFD group, addition of fish oil reduced the fluorescent glucan and endotoxin levels in serum by 34.3% and 50.4% respectively (P<0.05). Addition of fish oil also reversed the decrease in expressions of intestinal tight junction proteins caused by HFD. In terms of expression of inflammation factors, compared with HFD group, addition of fish oil significantly decreased the expressions of proinflammatory factors includingIL-8, IL-6 and IL-1β, and significantly elevated the expression of anti-inflammatory factor IL-10 in mouse jejunum and ileum (P<0.05).

      Conclusion 

      Dietary supplementation of fish oil can reduce the HFD-induced impairment of intestinal barrier function, which might be associated with the fish oil reducing intestinal inflammation.

    • [1]
      彭凯, 吴薇, 龙蕾, 等. 断奶仔猪的腹泻研究进展[J]. 饲料研究, 2015(13): 10-15.
      [2]
      JI Y, SAKATA Y, TSO P. Nutrient-induced inflammation in the intestine[J]. Curr Opin Clin Nutr, 2011, 14(4): 315-321. doi: 10.1097/MCO.0b013e3283476e74
      [3]
      DONG L, ZHANG Y, YANG L, et al. Effects of a high-fat diet on adipose tissue CD8+ T cells in young vs adult mice[J]. Inflammation, 2017, 40(6): 1944-1958. doi: 10.1007/s10753-017-0635-0
      [4]
      CREMONINI E, WANG Z W, BETTAIEB A, et al. (-)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance[J]. Redox Biol, 2018, 14: 588-599. doi: 10.1016/j.redox.2017.11.002
      [5]
      HAMILTON M K, BOUDRY G, LEMAY D G, et al. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent[J]. Am J Physiol-Gastr L, 2015, 308(10): G840-G851.
      [6]
      DING S L, CHI M M, SCULL B P, et al. High-fat diet: Bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse[J]. PLoS One, 2010, 5(8): e12191. doi: 10.1371/journal.pone.0012191
      [7]
      PETERSON L W, ARTIS D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis[J]. Nat Rev Immunol, 2014, 14(3): 141-153. doi: 10.1038/nri3608
      [8]
      BENÍTEZ-PÁEZ A, GÓMEZ DEL PULGAR E M, KJØLBÆK L, et al. Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health[J]. Trends Food Sci Technol, 2016, 57: 201-212. doi: 10.1016/j.jpgs.2016.11.001
      [9]
      MUHLROTH A, LI K S, RØKKE G, et al. Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of chromista[J]. Mar Drugs, 2013, 11(11): 4662-4697. doi: 10.3390/md11114662
      [10]
      左正三, 郭东升, 纪晓俊, 等. 肠道中多不饱和脂肪酸及其衍生物研究进展[J]. 中国生物工程杂志, 2018, 38(11): 66-75.
      [11]
      李启艳, 谢强胜, 刁飞燕, 等. 鱼油的化学成分及其药理活性研究进展[J]. 药物分析杂志, 2016, 36(7): 1157-1161.
      [12]
      MORI T A, BEILIN L J. Omega-3 fatty acids and inflammation[J]. Curr Atheroscler Rep, 2004, 6(6): 461-467. doi: 10.1007/s11883-004-0087-5
      [13]
      TONTONOZ P, SPIEGELMAN B M. Fat and beyond: The diverse biology of PPARγ[J]. Annu Rev Biochem, 2008, 77(1): 289-312. doi: 10.1146/annurev.biochem.77.061307.091829
      [14]
      龙烁, 王浩, 武书庚, 等. 二十二碳六烯酸的生理学功能及其在家禽生产中的应用[J]. 动物营养学报, 2017, 29(4): 1101-1109. doi: 10.3969/j.issn.1006-267x.2017.04.003
      [15]
      唐军旺, 方倩倩, 邵荣益, 等. 不同油脂对填饲期朗德鹅生产性能、血清指标及肝脏脂肪酸组成的影响[J]. 动物营养学报, 2018, 30(7): 2550-2560. doi: 10.3969/j.issn.1006-267x.2018.07.015
      [16]
      银忠. 地衣芽孢杆菌对菌群失调大鼠肠道微生态、黏膜结构和免疫细胞的影响[D]. 武汉: 华中农业大学, 2009.
      [17]
      HASAN A U, OHMORI K, KONISHI K, et al. Eicosapentaenoic acid upregulates VEGF-A through both GPR120 and PPARγ mediated pathways in 3T3-L1 adipocytes[J]. Mol Cell Endocrinol, 2015, 406: 10-18. doi: 10.1016/j.mce.2015.02.012
      [18]
      贺显晶, 孙东波, 武瑞. 鱼油对断奶SD大鼠生产性能、脏器指数及肠道形态的影响[J]. 黑龙江畜牧兽医, 2011(9): 144-146.
      [19]
      张智, 单庆文, 王琳琳, 等. 培菲康对高脂饮食诱导脂肪肝病大鼠肠黏膜屏障的保护作用[J]. 世界华人消化杂志, 2013, 21(2): 130-137.
      [20]
      MOREIRA A P B, TEXEIRA T F S, FERREIRA A B, et al. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia[J]. Br J Nutr, 2012, 108(5): 801-809. doi: 10.1017/S0007114512001213
      [21]
      TAKAHASHI Y, ISUZUGAWA K, MURASE Y, et al. Up-regulation of NOD1 and NOD2 through TLR4 and TNF-α in LPS-treated murine macrophages[J]. J Vet Med Sci, 2006, 68(5): 471-478. doi: 10.1292/jvms.68.471
      [22]
      GREGOR M F, HOTAMISLIGIL G S. Inflammatory mechanisms in obesity[J]. Annu Rev Immunol, 2011, 29(1): 415-445. doi: 10.1146/annurev-immunol-031210-101322
      [23]
      GEURTS L, NEYRINCK A M, DELZENNE N M, et al. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics[J]. Benef Mirbobes, 2014, 5(1): 3-17. doi: 10.3920/BM2012.0065
    • Related Articles

      [1]LIU Huan, DENG Shuzhen, ZHAO Xiaofeng, CAO Fengqin, LU Yongyue. Structure and photoreception mechanism of the compound eye of Bactrocera dorsalis Hendel[J]. Journal of South China Agricultural University, 2017, 38(2): 75-80. DOI: 10.7671/j.issn.1001-411X.2017.02.014
      [2]ZHAO Haiyan, LU Yongyue, ZENG Ling, LIANG Guangwen. Scanning Electron Microscopic Observation on Sensilla of the Antennal, Ovipositor and Abdomen in Female of Pachycrepoideus vindemmiae[J]. Journal of South China Agricultural University, 2013, 34(4): 499-503. DOI: 10.7671/j.issn.1001-411X.2013.04.010
      [3]CHEN Li, CHEN Kewei, LIANG Guangwen. Antennal Sensilla of Female Telenomus remus Observed with Scanning Electron Microscopy[J]. Journal of South China Agricultural University, 2013, 34(1): 72-75. DOI: 10.7671/j.issn.1001-411X.2013.01.015
      [4]JIAN Mei-ling, ZHANG Lai-li, MAO Run-qian. Studies on the Antennal Sensilla of Chilades pandava by Scanning Electron Microscopy[J]. Journal of South China Agricultural University, 2011, 32(2): 52-54. DOI: 10.7671/j.issn.1001-411X.2011.02.012
      [5]LIU Gui-qing,TIAN Ming-yi. Scanning Electron Microscopic Observation of Carabus prodigus Antennae and Their Electroantennographic Responses[J]. Journal of South China Agricultural University, 2008, 29(2): 50-55. DOI: 10.7671/j.issn.1001-411X.2008.02.012
      [6]HUANG Zhi-jun~1,TAN Bin-an~1,CHEN Xin-fang~2,YANG Bin-yao~2. The antennae microstructures of adults of Contarinia sp.under scanning electronic microscope[J]. Journal of South China Agricultural University, 2004, 25(2): 123-124. DOI: 10.7671/j.issn.1001-411X.2004.02.033
      [7]ZHU Hong liang 1,LIU Xiang dong 1,LU Yong gen 1,XU Shi xiong 2. Improved Method of PEG Embedding Section Being Used in Investigating Microtubules in Plant Embryo Sac[J]. Journal of South China Agricultural University, 2001, 22(4): 52-54. DOI: 10.7671/j.issn.1001-411X.2001.04.015
      [8]Chen Yuanling ,Jian Yuyu, Xu Xuebin. STUDIES ON MORPHOLOGICAL CHARACTERIZATION OF SOMATIC EMBRYOGENESIS OF Ind ica RICE(Oryza sativa L.)[J]. Journal of South China Agricultural University, 1994, (1): 78-84.
    • Cited by

      Periodical cited type(0)

      Other cited types(3)

    Catalog

      Article views (18112) PDF downloads (20298) Cited by(3)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return