Citation: | MEI Mingzhu, YANG Xianfeng, LONG Teng, et al. Phenotypic consequences of M gene rearrangement of rabies virus HEP-Flury in mouse neuroblastoma cells[J]. Journal of South China Agricultural University, 2020, 41(2): 33-39. DOI: 10.7671/j.issn.1001-411X.201907010 |
To explore the effects of M gene rearrangement of rabies virus HEP-Flury on gene transcription and protein expression, reveal the correlation between phenotypic consequences of virus in mouse neuroblastoma (NA) cells and M gene rearrangement.
The gene transcription, expression, growth and spread of parent strain rHEP-Flury and M gene rearranged virus stains (M2 and M4) in infected NA cells were compared by fluorescence quantitative PCR, Western blot, growth and spread experiments of virus in NA cells.
The transcription and expression of rabies virus structural gene were mainly affected by RNA synthesis of virus genome. The gene position mainly affected the ratio of transcription in a complete transcription process. The transcription ratios of leader RNA (LeRNA) and L mRNA of M gene rearranged viruses were significanthy higher than those of rHEP-Flury. The growth and spread of M gene rearranged viruses in NA cells were inferiorer than rHEP-Flury.
rHEP-Flury has wild-type gene order of rabies virus. Its growth and spread in NA cells are superiorer to M gene rearranged viruses. The position of structural gene in genome determines its transcription ratio in a complete transcription process and affects the growth and spread of virus in NA cells.
[1] |
MRAK R E, YOUNG L. Rabies encephalitis in humans: Pathology, pathogenesis and pathophysiology[J]. J Neuropathol Exp Neurol, 1994, 53(1): 1-10. doi: 10.1097/00005072-199401000-00001
|
[2] |
ALBERTINI A A, RUIGROK R W, BLONDEL D. Rabies virus transcription and replication[J]. Adv Virus Res, 2011, 79: 1-22. doi: 10.1016/B978-0-12-387040-7.00001-9
|
[3] |
BALL L A, PRINGLE C R, FLANAGAN B, et al. Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus[J]. J Virol, 1999, 73(6): 4705-4712.
|
[4] |
WERTZ G W, PEREPELITSA V P, BALL L A. Gene rearrangement attenuates expression and lethality of a nonsegmented negative strand RNA virus[J]. Proc Natl Acad Sci USA, 1998, 95(7): 3501-3506. doi: 10.1073/pnas.95.7.3501
|
[5] |
FLANAGAN E B, BALL L A, WERTZ G W. Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positions accelerates and enhances the protective immune response[J]. J Virol, 2000, 74(17): 7895-7902. doi: 10.1128/JVI.74.17.7895-7902.2000
|
[6] |
陈凯云, 文兆海, 翟少华, 等. 基因重排狂犬病病毒疫苗株免疫效果的初步研究[J]. 中国畜牧兽医, 2019, 46(1): 279-286.
|
[7] |
文兆海, 毛丽萍, 陈凯云, 等. 基因重排减毒狂犬病病毒的拯救及遗传稳定性的研究[J]. 中国兽医科学, 2018, 48(10): 1235-1241.
|
[8] |
MEI M, LONG T, ZHANG Q, et al. Phenotypic Consequences in vivo and in vitro of rearranging the P gene of RABV HEP-Flury[J]. Front Microbiol, 2017, 8. doi: 10.3389/fmicb.2017.00120.
|
[9] |
MEI M, LONG T, ZHANG Q, et al. Phenotypic consequence of rearranging the N gene of RABV HEP-Flury[J]. Viruses, 2019, 11(5). doi: 10.3390/v11050402.
|
[10] |
WIRBLICH C, TAN G S, PAPANERI A, et al. PPEY motif within the rabies virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity[J]. J Virol, 2008, 82(19): 9730-9738. doi: 10.1128/JVI.00889-08
|
[11] |
FINKE S, MUELLER-WALDECK R, CONZELMANN K K. Rabies virus matrix protein regulates the balance of virus transcription and replication[J]. J Gen Virol, 2003, 84(6): 1613-1621.
|
[12] |
PULMANAUSAHAKUL R, LI J, SCHNELL M J, et al. The glycoprotein and the matrix protein of rabies virus affect pathogenicity by regulating viral replication and facilitating cell-to-cell spread[J]. J Virol, 2008, 82(5): 2330-2338. doi: 10.1128/JVI.02327-07
|
[13] |
王朝, 周明, 傅振芳, 等. 狂犬病病毒逃逸宿主天然免疫反应的研究进展[J]. 生命科学, 2017, 29(3): 237-244.
|
[14] |
YANG X F, PENG J J, LIANG H R, et al. Gene order rearrangement of the M gene in the rabies virus leads to slower replication[J]. Virusdisease, 2014, 25(3): 365-371. doi: 10.1007/s13337-014-0220-1
|
[15] |
UGOLINI G. Rabies virus as a transneuronal tracer of neuronal connections[J]. Adv Virus Res, 2011, 79: 165-202. doi: 10.1016/B978-0-12-387040-7.00010-X
|
[16] |
ZHAO L, TORIUMI H, KUANG Y, et al. The roles of chemokines in rabies virus infection: Overexpression may not always be beneficial[J]. J Virol, 2009, 83(22): 11808-11818. doi: 10.1128/JVI.01346-09
|
[17] |
FABER M, FABER M L, PAPANERI A, et al. A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity[J]. J Virol, 2005, 79(22): 14141-14148. doi: 10.1128/JVI.79.22.14141-14148.2005
|
[18] |
DAVIS B M, RALL G F, SCHNELL M J. Everything you always wanted to know about rabies virus (but were afraid to ask)[J]. Annu Rev Virol, 2015, 2(1): 451-471. doi: 10.1146/annurev-virology-100114-055157
|
[19] |
WIRBLICH C, SCHNELL M J. Rabies virus (RV) glycoprotein expression levels are not critical for pathogenicity of RV[J]. J Virol, 2011, 85(2): 697-704. doi: 10.1128/JVI.01309-10
|
[20] |
PRINGLE C R. The genetics of vesiculoviruses[J]. Arch Virol, 1982, 72(1/2): 1-34.
|
[21] |
OKUMURA A, HARTY R N. Rabies virus assembly and budding[J]. Adv Virus Res, 2011, 79: 23-32. doi: 10.1016/B978-0-12-387040-7.00002-0
|
[22] |
FINKE S, CONZELMANN K K. Replication strategies of rabies virus[J]. Virus Res, 2005, 111(2): 120-131. doi: 10.1016/j.virusres.2005.04.004
|
[23] |
PATTNAIK A K, WERTZ G W. Replication and amplification of defective interfering particle RNAs of vesicular stomatitis virus in cells expressing viral proteins from vectors containing cloned cDNAs[J]. J Virol, 1990, 64(6): 2948-2957.
|
[24] |
KURILLA M G, CABRADILLA C D, HOLLOWAY B P, et al. Nucleotide sequence and host La protein interactions of rabies virus leader RNA[J]. J Virol, 1984, 50(3): 773-778.
|
[25] |
ZHANG R, LIU C, CAO Y, et al. Rabies viruses leader RNA interacts with host Hsc70 and inhibits virus replication[J]. Oncotarget, 2017, 8(27): 43822-43837.
|
[26] |
PREHAUD C, LAY S, DIETZSCHOLD B, et al. Glycoprotein of nonpathogenic rabies viruses is a key determinant of human cell apoptosis[J]. J Virol, 2003, 77(19): 10537-10547. doi: 10.1128/JVI.77.19.10537-10547.2003
|
[27] |
THOULOUZE M I, LAFAGE M, YUSTE V J, et al. High level of Bcl-2 counteracts apoptosis mediated by a live rabies virus vaccine strain and induces long-term infection[J]. Virology, 2003, 314(2): 549-561. doi: 10.1016/S0042-6822(03)00491-4
|
[28] |
PENG J, ZHU S, HU L, et al. Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines[J]. Autophagy, 2016, 12(10): 1704-1720. doi: 10.1080/15548627.2016.1196315
|
[29] |
LIU X, YANG Y, SUN Z, et al. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent challenge[J]. PLoS One, 2014, 9(2): e87105. doi: 10.1371/journal.pone.0087105
|
[30] |
LAY S, PREHAUD C, DIETZSCHOLD B, et al. Glycoprotein of nonpathogenic rabies viruses is a major inducer of apoptosis in human jurkat T cells[J]. Ann N Y Acad Sci, 2003, 1010: 577-581. doi: 10.1196/annals.1299.108
|
[31] |
SARMENTO L, TSEGGAI T, DHINGRA V, et al. Rabies virus-induced apoptosis involves caspase-dependent and caspase-independent pathways[J]. Virus Res, 2006, 121(2): 144-151. doi: 10.1016/j.virusres.2006.05.002
|