• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
HUANG Hongxia, ZHENG Zheng, DENG Xiaoling, et al. Population diversity of “Candidatus Liberibacter asiaticus” in Guangdong Province based on different gene loci[J]. Journal of South China Agricultural University, 2020, 41(2): 66-75. DOI: 10.7671/j.issn.1001-411X.201907007
Citation: HUANG Hongxia, ZHENG Zheng, DENG Xiaoling, et al. Population diversity of “Candidatus Liberibacter asiaticus” in Guangdong Province based on different gene loci[J]. Journal of South China Agricultural University, 2020, 41(2): 66-75. DOI: 10.7671/j.issn.1001-411X.201907007

Population diversity of “Candidatus Liberibacter asiaticus” in Guangdong Province based on different gene loci

More Information
  • Received Date: July 03, 2019
  • Available Online: May 17, 2023
  • Objective 

    To explore the intraspecific genetic structure and genetic diversity of “Candidatus Liberibacter asiaticus” (CLas) in different regions of Guangdong Province, and evaluate the feasibility of using multiple loci in studying genetic diversity of CLas.

    Method 

    Six polymorphic gene loci, including three phage regions (SC1, SC2 and PJXGC), transposon region (CLIBASIA_05620CLIBASIA_05625) and short tandem repeat (STR) genes, STR1 (CLIBASIA_03080) and STR12 (CLIBASIA_01215), were used to evaluate genetic diversity of 176 CLas samples from 10 cities in Guangdong Province.

    Result 

    Based on the prophage types, the CLas isolates were classified into six groups, among which the strains with Type II prophage were predominate, accounting for 85.23% of the population. Four types of isolates were identified based on transposon sites, and the Clas strains containing the B350 fragment (non-MCLas-A type) were the dominant group, accounting for 76.70% of the population. Based on the two STR loci, nine and ten band types were identified respectively, and the isolates with three CAGT tandem repeats at the STR1 locus were predominate accounting for 56.82% of the population. The distribution of polymorphic bands at the STR12 locus was scattered, and no predominate band type was identified. Cluster analysis showed that CLas populations from Zhanjiang, Maoming and Shenzhen were different from populations of other regions, while the CLas populations collected from Qingyuan and Meizhou were similar.

    Conclusion 

    Cluster results based on individual locus and based on all six loci are different, indicating the limitation of using single gene locus to analyze the genetic structure of CLas population.

  • [1]
    林孔湘. 柑桔黄梢(黄龙)病研究Ⅰ: 病情调查[J]. 植物病理学报, 1956, 2(1): 13-42.
    [2]
    BOVÉ J M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus[J]. J Plant Pathol, 2006, 88: 7-37.
    [3]
    JAGOUEIX S, BOVÉ J M, GARNIER M. The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the Proteobacteria[J]. Int J Syst Evol Microbiol, 1994, 44(3): 379-386.
    [4]
    田亚南, 柯穗, 柯冲. 应用多聚酶链式反应(PCR)技术检测和定量分析柑桔黄龙病病原[J]. 植物病理学报, 1996, 26(3): 243-250.
    [5]
    孔维文, 邓晓玲, 梁志慧, 等. 柑桔黄龙病病原DNA片段的克隆及序列分析[J]. 植物病理学报, 2000, 30(1): 71-75.
    [6]
    DING F, DENG X, HONG N, et al. Phylogenetic analysis of the citrus Huanglongbing (HLB) bacterium based on the sequences of 16S rDNA and 16S/23S rDNA intergenic regions among isolates in China[J]. Eur J Plant Pathol, 2009, 124(3): 495-503. doi: 10.1007/s10658-009-9436-0
    [7]
    SUBANDIYAH S, IWANAMI T, TSUYUMU S, et al. Comparison of 16S rDNA and 16S/23S intergenic region sequences among citrus greening organisms in Asia[J]. Plant Dis, 2000, 84(1): 15-18. doi: 10.1094/PDIS.2000.84.1.15
    [8]
    丁芳, 洪霓, 钟云, 等. 中国柑橘黄龙病病原16S rDNA序列研究[J]. 园艺学报, 2008, 35(5): 649-654.
    [9]
    ADKAR-PURUSHOTHAMA C R, QUAGLINO F, CASATI P, et al. Genetic diversity among ‘Candidatus Liberibacter asiaticus’ isolates based on single nucleotide polymorphisms in 16S rRNA and ribosomal protein genes[J]. Ann Microbiol, 2009, 59(4): 681-688. doi: 10.1007/BF03179208
    [10]
    KENTA T, SHIN-ICHI M, NORIKO F, et al. Evaluation of genetic diversity among ‘Candidatus Liberibacter asiaticus’ isolates collected in Southeast Asia[J]. Phytopathology, 2009, 99(9): 1062. doi: 10.1094/PHYTO-99-9-1062
    [11]
    DUAN Y, ZHOU L, HALL D G, et al. Complete genome sequence of citrus Huanglongbing bacterium ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics[J]. Mol Plant Microbe In, 2009, 22(8): 1011-1020. doi: 10.1094/MPMI-22-8-1011
    [12]
    ZHANG S, FLORESCRUZ Z, ZHOU L, et al. ‘Candidatus Liberibacter asiaticus’ carries an excision plasmid prophage and a chromosomally integrated prophage that becomes lytic in plant infections[J]. Mol Plant Microbe In, 2011, 24(4): 458-468. doi: 10.1094/MPMI-11-10-0256
    [13]
    LIU R, ZHANG P, PU X, et al. Analysis of a prophage gene frequency revealed population variation of ‘Candidatus Liberibacter asiaticus’ from two citrus-growing provinces in China[J]. Plant Dis, 2011, 95(4): 431-435. doi: 10.1094/PDIS-04-10-0300
    [14]
    ZHOU L, POWELL C A, HOFFMAN M T, et al. Diversity and plasticity of the intracellular plant pathogen and insect symbiont ‘Candidatus Liberibacter asiaticus’ as revealed by hypervariable prophage genes with intragenic tandem repeats[J]. J Appl Environ Microbiol, 2011, 77(18): 6663-6673. doi: 10.1128/AEM.05111-11
    [15]
    ZHENG Z, BAO M, WU F, et al. Predominance of single prophage carrying a CRISPR/cas system in ‘Candidatus Liberibacter asiaticus’ strains in Southern China[J]. PLoS One, 2016, 11(1): e0146422. doi: 10.1371/journal.pone.0146422
    [16]
    ZHENG Z, BAO M, WU F, et al. A type Ⅲ prophage of ‘Candidatus Liberibacter asiaticus’ carrying a restriction-modification system[J]. Phytopathology, 2018, 108(4): 454-461. doi: 10.1094/PHYTO-08-17-0282-R
    [17]
    李嘉慧, 郑正, 邓晓玲. 基于原噬菌体类型的我国柑橘黄龙病菌种群遗传结构分析[J]. 植物病理学报, 2019, 49(3): 334-342.
    [18]
    CHEN J, DENG X, SUN X, et al. Guangdong and Florida populations of ‘Candidatus Liberibacter asiaticus’ distinguished by a genomic locus with short tandem repeats[J]. Phytopathology, 2010, 100(6): 567-572. doi: 10.1094/PHYTO-100-6-0567
    [19]
    MA W, LIANG M, GUAN L, et al. Population structures of ‘Candidatus Liberibacter asiaticus’ in Southern China[J]. Phytopathology, 2014, 104(2): 158. doi: 10.1094/PHYTO-04-13-0110-R
    [20]
    KATOH H, SUBANDIYAH S, TOMIMURA K, et al. Differentiation of ‘Candidatus Liberibacter asiaticus’ isolates by variable-number tandem-repeat analysis[J]. J Appl Environ Microbiol, 2011, 77(5): 1910-1917. doi: 10.1128/AEM.01571-10
    [21]
    ISLAM M S, GLYNN J M, BAI Y, et al. Multilocus microsatellite analysis of ‘Candidatus Liberibacter asiaticus’ associated with citrus Huanglongbing worldwide[J]. BMC Microbiol, 2012, 12(1): 39. doi: 10.1186/1471-2180-12-39
    [22]
    许美容, 郑正, 李昕昱, 等. 基于短串联重复和PAGE的柑橘黄龙病菌‘Candidatus Liberibacter asiaticus’种间遗传多样性分析(英文)[J]. 植物病理学报, 2014, 44(6): 609-619.
    [23]
    WANG X F, TAN J, BAI Z Q, et al. Detection and characterization of miniature inverted-repeat transposable elements in ‘Candidatus Liberibacter asiaticus’[J]. J bacteriol, 2013, 195(17): 3979-3986. doi: 10.1128/JB.00413-13
    [24]
    LI W, HARTUNG J S, LEVY L. Quantitative real-time PCR for detection and identification of ‘Candidatus Liberibacter species’ associate with citrus Huanglongbing[J]. J Microbiol Meth, 2006, 66(1): 104-115. doi: 10.1016/j.mimet.2005.10.018
    [25]
    TAMURA K, STECHER G, PETERSON D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0[J]. Mol Biol Evol, 2013, 30: 2725-2729. doi: 10.1093/molbev/mst197
    [26]
    黄永辉, 程保平, 彭埃天, 等. 广东不同地区柑橘黄龙病菌的遗传多样性分析[J]. 植物保护, 2014, 40(1): 60-64.
    [27]
    ZHENG Z, WU F, KUMAGAI L B, et al. Two ‘Candidatus Liberibacter asiaticus’ strains recently found in California harbor different prophages[J]. Phytopathology, 2017, 107(6): 662-668. doi: 10.1094/PHYTO-10-16-0385-R
    [28]
    da SILVA P A, FASSINI C G, SAMPAIO L S, et al. Genetic diversity of ‘Candidatus Liberibacter asiaticus’ revealed by short tandem repeats and prophage typing indicates population homogeneity in Brazil[J]. Phytopathology, 2019, 109(6): 960-971. doi: 10.1094/PHYTO-08-18-0295-R
  • Cited by

    Periodical cited type(12)

    1. 罗明达,邓继忠,霍静朗,张建瓴,叶家杭,雷落成,张子超. 基于复合模糊PID的植保无人机变量喷雾系统设计. 农机化研究. 2024(02): 9-15 .
    2. 袁常健,张兰婷,韩虎,何雄奎,刘亚佳. 电磁阀异步启闭的PWM喷雾系统设计与试验. 农机化研究. 2024(02): 139-144 .
    3. 麻丽明,沈海军,王贵丽,周燕. 航测像控点测量与布设下的智能施药作业研究. 农机化研究. 2024(04): 221-224+229 .
    4. 翟长远,张焱龙,邹伟,宋健,韩长杰,窦汉杰. 基于农药喷施溯源的精准变量喷药监控系统设计与试验. 农业机械学报. 2024(02): 160-169 .
    5. 孙静海,冯航. 基于强化学习自适应PID的无人直升机控制. 电子制作. 2023(06): 66-69 .
    6. 叶星晨,任玲,王宁,赵斌栋,宋文彬. 基于BP神经网络PID的移栽机双闭环调速系统. 农机化研究. 2022(04): 12-18+79 .
    7. 刘丽. 传统植保喷药机使用现状及变量喷雾技术应用. 南方农机. 2022(02): 63-65 .
    8. 胡维月,席玉强,尹新明. 中国农用植保无人机施药技术研究进展. 现代农业科技. 2022(10): 95-99 .
    9. 张翔,张进. 传统植保喷药机使用现状及变量喷雾技术的应用. 南方农机. 2022(12): 97-99 .
    10. 王润涛,刘瑶,王树文,李明,孙文峰,薛忠. 基于模糊控制的车速跟随变量喷雾系统设计与试验. 农业机械学报. 2022(06): 110-117 .
    11. 万能,汪晓,郭可贵,苏欣欣. 大功率轻量化无人机激光清障系统设计. 自动化与仪表. 2022(06): 38-42+73 .
    12. 孙文峰,刘海洋,王润涛,付天鹏,吕金庆,王福林. 基于神经网络整定的PID控制变量施药系统设计与试验. 农业机械学报. 2020(12): 55-64+94 .

    Other cited types(19)

Catalog

    Article views (2204) PDF downloads (2713) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return