Citation: | CUI Yongting, ZHANG Keping, SUN Bugong, et al. Effect of laser quenching process on surface hardness and wear performance of wheat grinder roller[J]. Journal of South China Agricultural University, 2020, 41(2): 126-132. DOI: 10.7671/j.issn.1001-411X.201906043 |
To study properties of surface material of wheat grinder roller after laser quenching, and solve the problems of grinding roller such as serious wear and short service life.
Using the principle of rotating combination design of response surface, a mathematical model of laser power, spot diameter and scanning speed with surface hardness of grinding roller material was established according to three-factor and five-level test method. The effects of laser power, scanning speed, spot diameter and reciprocal action among three factors on grinding roller surface hardness were analyzed. The optimal parameter combination was obtained. The wear mechanism of surface material of the grinding roller after quenching was investigated.
Laser power, spot diameter and scanning speed significantly affected surface hardness of grinding roller material. The effects of laser power, spot diameter and scanning speed on surface hardness of grinding roller material weakened successively. The optimal technological parameter combination was laser power 190 W, spot diameter 0.70 mm and scanning speed 220 mm/s and the sample surface hardness obtained was 688.67 HV, which was 35% higher than original hardness. The mass loss of sample treated by optimal laser quenching parameter combination in wear process was about 7% of the untreated sample. The friction between grinding roller surface material and wheat powder material after laser quenching weakened. The scratches of wheat powder material on sample surface were lighter and shorter. The grooves were shallower and narrower.
The wear resistance against wheat powder material of grinding roller surface material is obviously enhanced after laser quenching treatment.
[1] |
张继英, 蒋梅峰, 朱志昂. 实验室小麦磨粉机换辊前后小麦粉品质特性分析[J]. 粮食科技与经济, 2017, 42(3): 49-51.
|
[2] |
张克平, 姜良朋, 姚亚萍. 白口铁抗小麦籽粒粉料的磨料磨损试验研究[J]. 中国粮油学报, 2017, 32(1): 109-112. doi: 10.3969/j.issn.1003-0174.2017.01.019
|
[3] |
张克平, 姜良朋, 王久鑫. 不同铬含量白口铸铁的抗小麦粉料磨粒磨损性能[J]. 机械工程材料, 2016, 40(12): 57-60. doi: 10.11973/jxgccl201612013
|
[4] |
张克平, 姜良朋, 黄晓鹏. 小麦磨粉机磨辊材料抗磨损热处理工艺优化[J]. 农业工程学报, 2016, 32(21): 271-276. doi: 10.11975/j.issn.1002-6819.2016.21.037
|
[5] |
吴家祥, 张克平. 小麦制粉过程中辊间压力对磨辊磨损性能的影响[J]. 中国农机化学报, 2015, 36(1): 157-159.
|
[6] |
张克平, 吴家祥, 姚亚萍. 影响磨辊磨损失重的技术参数优化[J]. 中国粮油学报, 2016, 31(5): 117-121. doi: 10.3969/j.issn.1003-0174.2016.05.023
|
[7] |
艾云龙, 陈卫华, 丁家圆, 等. 低碳高铬白口铸铁热处理工艺研究[J]. 金属热处理, 2011, 36(6): 107-111.
|
[8] |
艾莹珺, 艾云龙, 丁家圆, 等. 热处理对高铬白口铸铁组织与性能的影响[J]. 热加工工艺, 2010, 39(16): 133-135. doi: 10.3969/j.issn.1001-3814.2010.16.040
|
[9] |
苏超然, 吕长乐, 师陆冰, 等. 激光离散淬火对球墨铸铁磨损与损伤性能的影响[J]. 表面技术, 2018, 47(11): 85-90.
|
[10] |
刘庆刚, 郭彦书, 于新奇, 等. 激光表面淬火工艺对表面硬度影响实验研究[J]. 制造业自动化, 2018, 40(8): 10-11. doi: 10.3969/j.issn.1009-0134.2018.08.003
|
[11] |
张开熙, 刘永超, 周铁军, 等. 激光淬火在汽车模具制造业中的应用研究[J]. 模具制造, 2018, 18(11): 78-81.
|
[12] |
符轲, 张修庆, 续晓霄, 等. 45钢激光淬火工艺优化及性能[J]. 金属热处理, 2017, 42(1): 154-158.
|
[13] |
钱振华. 激光微织构技术在关节轴承表面处理中的应用[J]. 机械制造, 2018, 56(7): 85-88. doi: 10.3969/j.issn.1000-4998.2018.07.024
|
[14] |
覃敏. 激光表面处理技术在重工业领域的研究和应用进展[J]. 装备制造技术, 2017(12): 51-53. doi: 10.3969/j.issn.1672-545X.2017.12.016
|
[15] |
封亚明, 何柏林, 江明明, 等. 表面技术在模具制造和修复中的应用[J]. 热加工工艺, 2018, 47(4): 30-34.
|
[16] |
何柏林, 江明明. 激光淬火技术在模具表面处理中的应用与展望[J]. 表面技术, 2016, 45(11): 180-186.
|
[17] |
刘红宇, 张雷, 黄雄荣. 激光表面改性技术及其在轴承上的应用[J]. 热处理, 2018, 33(3): 40-43. doi: 10.3969/j.issn.1008-1690.2018.03.009
|
[18] |
苏辉, 马冰, 依颖辉, 等. 42CrMo钢激光淬火组织和硬度的研究[J]. 兵器材料科学与工程, 2011, 34(2): 84-86. doi: 10.3969/j.issn.1004-244X.2011.02.025
|
[19] |
万芳新, 黄晓鹏, 吴劲锋, 等. 激光淬火功率对45#钢抗植物磨料磨损性能的影响[J]. 材料科学与工程学报, 2017, 35(5): 719-723.
|
[20] |
郜飞飞, 王敬忠, 包汉生. 激光淬火工艺参数对HT210淬硬层深及硬度的影响[J]. 物理测试, 2017, 35(5): 20-25.
|
[21] |
贺长林, 陈少克, 周中河, 等. 模具钢718激光淬火的工艺参数研究[J]. 热加工工艺, 2012, 41(20): 169-172.
|
[22] |
华希俊, 郝静文, 王蓉, 等. 泥浆泵高铬铸铁材料激光淬火技术及其摩擦磨损性能研究[J]. 表面技术, 2017, 46(6): 215-220.
|