Citation: | OUYANG Jinkui, WU Chunyin, WANG Yuyang, et al. Identification of endophytic fungus Chaetomium sp. Eef-10 from Eucalyptus exserta and analysis of its active ingredients[J]. Journal of South China Agricultural University, 2020, 41(2): 104-110. DOI: 10.7671/j.issn.1001-411X.201905004 |
To determine the classification status of endophytic fungus Eef-10. To isolate and identify secondary metabolites of Eef-10 and evaluate their antibacterial and antitumor activities in order to obtain natural active compounds.
The endophytic fungus was identified by combining morphology and molecular biology methods. The secondary metabolites were mainly separated and purified by vacuum silica gel column chromatography, sephadex LH-20 column chromatography and semi-preparative HPLC. The compounds were identified mainly based on 1H NMR and 13C NMR spectral data as well as related references. The antibacterial activities against five different test bacteria were determined by the MTT method and the antitumor activities against two cancer cells were determined by the CCK8 method.
Three compounds were isolated from the endophytic fungus Eef-10, namely atraric acid (Compound Ⅰ), ethyl 2, 4-dihydroxy-3, 6-dimethylbenzoate (Compound Ⅱ) and 4-methyl-5, 6-dihydro-2 H-pyran-2-one (Compound Ⅲ). Compound Ⅱ displayed strong inhibitory activities against five test gram-negative bacteria, and the IC50 values were 35.87−55.50 μg/mL. The IC50 values of compound Ⅰ were 67.25−130.55 μg/mL, while compound Ⅲ had IC50 values of more than 200 μg/mL for all five bacteria. The IC50 value of compound Ⅱ for Hep-G2 was 1.50 μg/mL, which was stronger than the positive control camptothecin of 3.6 μg/mL.
Compounds Ⅰ−Ⅲ were isolated from the endophytic fungus Chaetomium sp. Eef-10 and compound Ⅱ showed great antibacterial and antitumor activities on R. solanacearum and Hep-G2 tumor cells.
[1] |
杨镇, 曹君. 植物内生菌及其次级代谢产物的研究进展[J]. 微生物学杂志, 2016, 36(4): 1-6. doi: 10.3969/j.issn.1005-7021.2016.04.001
|
[2] |
黄敬瑜, 张楚军, 姚瑜龙, 等. 植物内生菌生物抗菌活性物质研究进展[J]. 生物工程学报, 2017(2): 178-186.
|
[3] |
王举涛, 马宗慧, 王国凯, 等. 亳芍内生真菌Alternaria alternate次生代谢产物的研究[J]. 中草药, 2019, 50(5): 1061-1065. doi: 10.7501/j.issn.0253-2670.2019.05.006
|
[4] |
马养民, 乔珂, 李梦云, 等. 夹竹桃内生真菌R22的次生代谢产物研究[J]. 陕西科技大学学报, 2016, 34(6): 125-129. doi: 10.3969/j.issn.1000-5811.2016.06.024
|
[5] |
王富乾, 蒋捷, 马浩然, 等. 一株毛壳属内生真菌次生代谢产物研究[J]. 中草药, 2017, 48(7): 1298-1301.
|
[6] |
LI S, ZHANG X, WANG X H, et al. Novel natural compounds from endophytic fungi with anticancer activity[J]. Eur J Med Chem, 2018, 156: 316-343. doi: 10.1016/j.ejmech.2018.07.015
|
[7] |
YU J, WU Y, HE Z, et al. Diversity and antifungal activity of endophytic fungi associated with Camellia oleifera[J]. Mycobiology, 2018, 46(2): 85-91. doi: 10.1080/12298093.2018.1454008
|
[8] |
WANG D, WANG H, LI J, et al. Investigating the role of endophytic fungi in Gentiana scabrabge. by cross-growth period inoculation[J]. Indian J Microbiol, 2018, 58(3): 319-325. doi: 10.1007/s12088-018-0725-1
|
[9] |
SHAN T, TIAN J, WANG X, et al. Bioactive spirobisnaphthalenes from the endophytic fungus Berkleasmium sp.[J]. J Nat Prod, 2014, 77(10): 2151-2160. doi: 10.1021/np400988a
|
[10] |
谢安强, 洪伟, 吴承祯, 等. 桉树内生菌对尾巨桉幼苗抗寒性的影响[J]. 福建农林大学学报(自然科学版), 2011, 40(2): 138-144.
|
[11] |
谢安强, 洪伟, 吴承祯, 等. 10株桉树内生真菌对尾巨桉(E. urophylla×E. grandis)光合作用的影响[J]. 福建林学院学报, 2011, 31(1): 31-37. doi: 10.3969/j.issn.1001-389X.2011.01.006
|
[12] |
谢安强, 洪伟, 吴承祯, 等. 内生真菌对低磷胁迫下尾巨桉生理及土壤特性的影响[J]. 西南林业大学学报, 2013, 33(3): 1-7. doi: 10.3969/j.issn.2095-1914.2013.03.001
|
[13] |
KHARWAR R N, GOND S K, KUMAR A, et al. A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity[J]. World J Microbiol Biotechnol, 2010, 26(11): 1941-1948. doi: 10.1007/s11274-010-0374-y
|
[14] |
格希格图, 胡鸢雷, 慈忠玲, 等. 桉树根部内生菌与青枯病相关关系研究[J]. 林业实用技术, 2009(8): 42-43.
|
[15] |
MOHALI S, SLIPPERS B, WINGFIELD M J. Two new Fusicoccum species from Acacia and Eucalyptus in Venezuela, based on morphology and DNA sequence data[J]. Mycol Res, 2006, 110(4): 405-413. doi: 10.1016/j.mycres.2006.01.006
|
[16] |
冯皓. 桉树内生真菌及其次生代谢产物生物活性研究[D]. 广州: 华南农业大学, 2016.
|
[17] |
SEKHAR V C. Morphology and selection of potential region for DNA barcoding to identify Chaetomium species[D]. New Delhi: Indian Agricultural Research Institute, 2015.
|
[18] |
单体江, 秦楷, 谢银燕, 等. 木麻黄内生真菌次生代谢产物及生物活性[J]. 华南农业大学学报, 2019, 40(3): 67-74. doi: 10.7671/j.issn.1001-411X.201807040
|
[19] |
刘志强, 王平, 单体江, 等. 稻曲球脂溶性成分及其抗细菌和抗氧化活性[J]. 天然产物研究与开发, 2012, 24(12): 1777-1781. doi: 10.3969/j.issn.1001-6880.2012.12.019
|
[20] |
OUYANG J K, MAO Z L, GUO H, et al. Mollicellins O–R, four new depsidones isolated from the endophytic fungus Chaetomium sp. Eef-10[J]. Molecules, 2018, 23(12): 3218-3229. doi: 10.3390/molecules23123218
|
[21] |
谭悠久. 毛壳菌科(Chaetomiaceae)分类及分子系统发育研究[D]. 杨凌: 西北农林科技大学, 2005.
|
[22] |
AYSEGUL G, ESRA K A, IPEK S, et al. Biological activities of Pseudevernia furfuracea (L.) Zopf extracts and isolation of the active compounds[J]. J Ethnopharmacol, 2012, 144(3): 726-734. doi: 10.1016/j.jep.2012.10.021
|
[23] |
SCHLEICH S, PAPAIOANNOU M, BANIAHMAD A, et al. Activity-guided isolation of an antiandrogenic compound of Pygeum africanum[J]. Planta Med, 2006, 72(6): 547-551. doi: 10.1055/s-2006-941472
|
[24] |
YING Y M, ZHANG L W, SHAN W G, et al. Secondary metabolites of Peyronellaea sp. XW-12, an endophytic fungus of Huperzia serrata[J]. Chem Nat Comp, 2014, 50(4): 723-725. doi: 10.1007/s10600-014-1063-0
|
[25] |
PAPAIOANNOU M, SCHLEICH S, PRADE I, et al. The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth[J]. J Cell Mol Med, 2009, 13(8b): 14.
|
[26] |
ROELL D, BANIAHMAD A. The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth[J]. Mol Cell Endocrinol, 2011, 332(1/2): 1-8. doi: 10.1016/j.mce.2010.09.013
|
[27] |
CHOUDHARY M L, ALI M, WAHAB A, et al. Parmotrema cooperi中的新型抗醣化物质和酶抑制剂(英文)[J]. 中国科学: 化学, 2012, 42(1): 97-98.
|
[28] |
SEO C, HANYIM J, LEE H K, et al. PTP1B inhibitory secondary metabolites from the Antarctic lichen Lecidella carpathica[J]. Mycology, 2011, 2(1): 18-23. doi: 10.1080/21501203.2011.554906
|
[29] |
ALICIA B, GRACIELA B M, NORMA K, et al. Eremophilanolides and other constituents from the Argentine liverwort Frullania brasiliensis[J]. Phytochemistry, 2002, 59(2): 205-213. doi: 10.1016/S0031-9422(01)00452-6
|
[30] |
GORMANN R, KALOGA M, LI X C, et al. Furanonaphthoquinones, atraric acid and a benzofuran from the stem barks of Newbouldia laevis[J]. Phytochemistry, 2003, 64(2): 583-587. doi: 10.1016/S0031-9422(03)00277-2
|
[31] |
PAPAIOANNOU M, ANNU A S, HONG W, et al. Computational and functional analysis of the androgen receptor antagonist atraric acid and its derivatives[J]. Anti-Cancer Agents Med Chem, 2013, 13(5): 801-810. doi: 10.2174/1871520611313050014
|