Citation: | NI Sai, LIU Yinchun, LI Jian, et al. Fermentation optimization of Penicillium citrinum PA-33 strain by response surface method[J]. Journal of South China Agricultural University, 2019, 40(2): 94-102. DOI: 10.7671/j.issn.1001-411X.201804033 |
To optimize the medium composition and fermentation conditions of Penicillium citrinum PA-33 to improve its antibacterial activity.
Single factor experiments were used to determine the optimum basic medium, carbon sources, nitrogen sources and inorganic salts. The optimum formulation of fermentation medium was determined by response surface methodology. On the basis of single factor tests of fermentation conditions, the optimal combination of fermentation conditions was optimized by ternary quadratic rotation unitized design and frequency analysis method.
The optimal medium composition were: Potato juice 219.91 g·L−1, mannitol 34.11 g·L−1 and soybean powder 6.25 g·L−1. The optimal fermentation conditions were: Liquid volume 50 mL, inoculation concentration 3.5% (φ), culture temperature 28 ℃, rotation speed 150 r·min−1 and fermentation for 12 d. The inhibition zone diameter of fermentation broth after optimization on Escherichia coli reached 28.99 mm, increased by 10.26 mm compared with 18.73 mm under the original conditions.
Response surface methodology, ternary quadratic rotation unitized design and frequency analysis method significantly enhance the antibacterial activity of fermentation broth of Penicillium citrinum PA-33, and this study provides a basis for isolation of antibacterial active substances and industrial production of this strain.
[1] |
罗清, 彭程, 叶波平. 青霉属真菌研究新进展[J]. 药物生物技术, 2016, 5(23): 452-456.
|
[2] |
郑婕施, 江北, 张琪, 等. 青霉属真菌活性代谢产物研究进展[J]. 工业微生物, 2017(06): 50-56. doi: 10.3969/j.issn.1001-6678.2017.06.009
|
[3] |
LU Z Y, LIN Z J, WANG W L, et al. Citrinin dimers from the halotolerant fungus Penicillium citrinum B-57[J]. J Nat Prod, 2008, 71(4): 543-546. doi: 10.1021/np0704708
|
[4] |
DU L, LI D, ZHANG G, et al. Novel carbon-bridged citrinin dimers from a volcano ash-derived fungus Penicillium citrinum and their cytotoxic and cell cycle arrest activities[J]. Tetrahedron, 2010, 66(47): 9286-9290. doi: 10.1016/j.tet.2010.09.036
|
[5] |
CLARK B R, CAPON R J, LACEY E, et al. Citrinin revisited: From monomers to dimers and beyond[J]. Org. Biomol Chem, 2006, 4(8): 1520-1528. doi: 10.1039/b600960c
|
[6] |
LIU H C, DU L, ZHU T J, et al. Two new citrinin dimers from a volcano ash-derived fungus, Penicillium citrinum HGY1-5[J]. Helv Chim Acta, 2010, 93(11): 2224-2230. doi: 10.1002/hlca.v93.11
|
[7] |
NI M, LIN W L, YANG P, et al. A novel citrinin derivative from the marine-source fungus Penicillium citrinum[J]. Acta Pharm, 2015, 50(2): 203-206.
|
[8] |
LIU Y, LI X M, MENG L H, et al. Bisthiodiketopiperazines and acorane sesquiterpenes produced by the marine-derived fungus Penicillium adametzioides AS-53 on different culture media[J]. J Nat Prod, 2015, 78(6): 1294-1299. doi: 10.1021/acs.jnatprod.5b00102
|
[9] |
申光辉, 郑丽君, 张志清, 等. 解淀粉芽胞杆菌PC2产抑菌物质培养基及发酵条件优化[J]. 微生物学通报, 2017, 44(6): 1358-1369.
|
[10] |
王昊鹏, 吴黎明, 赵柳微, 等. 烟曲霉素发酵培养基的优化研究[J]. 食品工业科技, 2017: 1-14.
|
[11] |
RUQAYYAH T I D, JAMAL P, ALAM M Z, et al. Application of response surface methodology for protein enrichment of cassava peel as animal feed by the white-rot fungus Panus tigrinus M609RQY[J]. Food Hydrocolloid, 2014, 42: 298-303. doi: 10.1016/j.foodhyd.2014.04.027
|
[12] |
MUTHUKUMAR V, RAJESH N, VENKATASAMY R, et al. Mathematical modeling for radial overcut on electrical discharge machining of incoloy 800 by response surface methodology[J]. Procedia Materials Science, 2014, 6: 1674-1682. doi: 10.1016/j.mspro.2014.07.153
|
[13] |
YANG P, FANG M, LIU Y W. Optimization of a phase adjuster in a thermo-acoustic stirling engine using response surface methodology[J]. Energy Procedia, 2014, 61: 1772-1775. doi: 10.1016/j.egypro.2014.12.209
|
[14] |
李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41-45. doi: 10.3969/j.issn.1006-7167.2015.08.011
|
[15] |
梁新乐, 黄莹莹, 张虹, 等. 响应面法优化桔青霉F-5-5核酸酶P1发酵培养基碳氮源[J]. 核农学报, 2011, 25(1): 57-61.
|
[16] |
谢祥聪, 刘琴英, 蒋冬花, 等. 淡色生赤壳菌(Bionectriao chroleuca)Bo-1菌株产生抗菌物质的发酵条件优化[J]. 生物技术通报, 2014(1): 166-170.
|
[17] |
郭雷, 朱文成, 刘玮炜, 等. 抗菌活性海洋真菌HN4-13的鉴定及其发酵优化[J]. 微生物学通报, 2013, 40(6): 951-958.
|
[18] |
胡一峰, 曹一岚, 黄俊龙. 美伐他汀发酵菌种筛选和发酵条件优化[J]. 浙江化工, 2012, 43(2): 4-6. doi: 10.3969/j.issn.1006-4184.2012.02.002
|
[19] |
喻晨, 张亚雄, 赵劼, 等. 响应面法优化桔青霉产核酸酶P1培养基[J]. 食品科学, 2011, 32(17): 283-286.
|
[20] |
MENG L H, LIU Y, LI X M, et al. Citrifelins A and B, citrinin adducts with a tetracyclic framework from cocultures of marine-derived isolates of Penicillium citrinum and Beauveria felina[J]. J Nat Prod, 2015, 78(9): 2301-2305. doi: 10.1021/acs.jnatprod.5b00450
|
1. |
陈学深,熊悦淞,程楠,马旭,齐龙. 自适应振动式稻田株间柔性机械除草性能试验. 吉林大学学报(工学版). 2024(02): 375-384 .
![]() | |
2. |
桑世飞,孙晓涵,姚国琴,马腾云,章怡静,郑阳阳,丰柳春,姬生栋. 抗ALS抑制剂类除草剂分子标记的开发及应用. 中国稻米. 2024(04): 17-23 .
![]() | |
3. |
陈海荣,陈应海,车年萍,周绍琴,史扬杰. 适用于条播水稻机械除草作业的对行纠偏控制系统设计与试验. 农业装备技术. 2024(03): 41-44 .
![]() | |
4. |
胡钧烜,牛坡,郑岩,刘恩泽. 基于Matlab手扶式除草机振动分析及优化. 农业与技术. 2024(13): 52-57 .
![]() | |
5. |
何淑洁,孔德就,李鹏. 新能源农机装备的发展现状与趋势. 广西农学报. 2024(02): 68-75 .
![]() | |
6. |
杨颖,杨宁,邹世彦,张秀明,王明丽. 自走乘坐式水田除草机设计与试验. 农机市场. 2024(09): 56-58 .
![]() | |
7. |
李世柱,王立军. 机械除草技术装备应用调研及发展建议. 农业工程. 2024(09): 19-22 .
![]() | |
8. |
王文明,陶冶. 丘陵山区小型茶园除草机设计与试验. 中国农机装备. 2024(11): 86-89 .
![]() | |
9. |
陈佶,刘伟华. 稻田机械除草技术装备研究与应用现状. 农业工程. 2024(11): 17-22 .
![]() | |
10. |
靳文停,王深研,钱海峰,李文龙,杨家豪,马浏轩. 基于LS-DYNA的水田株间除草爪切削土壤仿真分析. 农机化研究. 2023(03): 203-209 .
![]() | |
11. |
马永明. 水稻插秧机的复合作业探索. 农机使用与维修. 2023(02): 27-30 .
![]() | |
12. |
李立军,黄福平,王烨. 割草无人车Web端管控系统设计. 数字通信世界. 2023(03): 191-193 .
![]() | |
13. |
赵前程. 辽宁沈阳地区水稻机械化优质栽培技术. 特种经济动植物. 2023(06): 128-130 .
![]() | |
14. |
赵晋,黄赟,翁晓星,刘丹,戴津婧. 水稻田间除草装备现状与分析. 农业开发与装备. 2023(06): 33-35 .
![]() | |
15. |
卢天妹. 智能化技术在水稻生产全程机械化中的应用研究与发展趋势. 农业工程技术. 2023(17): 31-32 .
![]() | |
16. |
焦晋康,胡炼,陈高隆,涂团鹏,王志敏,臧英. 水田行间除草装置设计与试验. 农业工程学报. 2023(24): 11-22 .
![]() | |
17. |
靳文停,周成,马浏轩,葛宜元. 有机稻田株间目标识别及机械除草技术综述. 农机化研究. 2022(08): 9-14 .
![]() | |
18. |
周志强. 水田机械除草技术的研究现状与发展趋势. 南方农机. 2022(05): 16-18+28 .
![]() | |
19. |
金佳俊,谢东升,邵圣乐,奚小波. 往复摆动式水田机械除草机的设计. 农业装备技术. 2022(02): 14-16 .
![]() | |
20. |
方会敏,牛萌萌,薛新宇,姬长英. 玉米田间机械-化学协同除草的杂草防除效果. 农业工程学报. 2022(06): 44-51 .
![]() | |
21. |
陈学深,方根杜,熊悦淞,王宣霖,武涛. 基于稻田除草部件横向偏距视觉感知的对行控制系统设计与试验. 华南农业大学学报. 2022(05): 83-91 .
![]() | |
22. |
靳文停,葛宜元,樊文武,马浏轩,李文龙,杨荣敏. 倒V型稻田株间除草装置虚拟仿真及验证. 中国农机化学报. 2022(10): 72-77 .
![]() | |
23. |
唐伟,徐红星,董卉,杨永杰,郑承梅,陆永良. 我国水稻田除草剂同步用药现状与发展趋势. 杂草学报. 2022(02): 1-5 .
![]() | |
24. |
李姝然. 农田杂草机械化控制技术现状与特点. 农机使用与维修. 2022(11): 143-145 .
![]() | |
25. |
王金武,马骁驰,唐汉,王奇,吴亦鹏,张振江. 曲面轮齿斜置式稻田行间除草装置设计与试验. 农业机械学报. 2021(04): 91-100 .
![]() | |
26. |
王金峰,翁武雄,鞠金艳,陈鑫胜,王金武,王汉龙. 基于遥控转向的稻田行间除草机设计与试验. 农业机械学报. 2021(09): 97-105 .
![]() |