HE Canlong, SHEN Mingxia, LIU Longshen, OKINDA Cedric, YANG Ji, SHI Hong. Design and realization of a greenhouse temperature intelligent control system based on NB-IoT[J]. Journal of South China Agricultural University, 2018, 39(2): 117-124. DOI: 10.7671/j.issn.1001-411X.2018.02.018
    Citation: HE Canlong, SHEN Mingxia, LIU Longshen, OKINDA Cedric, YANG Ji, SHI Hong. Design and realization of a greenhouse temperature intelligent control system based on NB-IoT[J]. Journal of South China Agricultural University, 2018, 39(2): 117-124. DOI: 10.7671/j.issn.1001-411X.2018.02.018

    Design and realization of a greenhouse temperature intelligent control system based on NB-IoT

    More Information
    • Received Date: September 18, 2017
    • Available Online: May 17, 2023
    • Objective 

      To develop an automated greenhouse environmental monitoring and control system based on an NB-IoT low-rate narrow bandwidth networking and 5G low-power massive connection technology.

      Method 

      Ultra-low power chip MSP430F149 was applied to collect environmental information. Using the NB-IoT's cellular networking platform and the cloud intelligent control system and combining multi-sensor fusion with fuzzy PID-grading control technology, greenhouse environment was controlled according to user needs.

      Result 

      Using the automated system in greenhouse, the relative error of greenhouse environmental information collection was below 1%, the average control accuracy was 3.57% (±1.0 ℃), the transmission distance was not limited and the automatic regulation of crop growth temperature was realized.

      Conclusion 

      The system is stable and reliable, and provides a favorable environment for plant growth as well as a strong technical support for crop research.

    • [1]
      黄文超. NB-IoT低速率窄带物联网通信技术现状及发展趋势[J]. 电子测试, 2017(6): 29.
      [2]
      WANG Y P E, LIN X, ADHIKARY A, et al. A primer on 3GPP narrowband internet of things[J]. IEEE Commun Mag, 2017, 55(3): 117-123.
      [3]
      ADHIKARY A, LIN X, WANG Y P E. Performance evaluation of NB-IoT coverage[C]// IEEE. 2017 IEEE 86th vehicular technology conference. Toronto: IEEE, 2017: 1-5.
      [4]
      曲井致. NB-IoT低速率窄带物联网通信技术现状及发展趋势[J]. 科技创新与应用, 2016(31): 115.
      [5]
      李春玉. 密闭环境空气质量监测系统[D]. 哈尔滨: 哈尔滨理工大学, 2016.
      [6]
      张宏, 沈明霞, 陆明洲, 等. 穿戴式猪用心电监测系统设计[J]. 南京农业大学学报, 2016, 39(5): 872-879.
      [7]
      郑晓庆, 杨日杰, 杨立永, 等. 多路输出DC-DC电路设计[J]. 国外电子测量技术, 2012, 31(9): 31-33.
      [8]
      HE J, XU L, WANG P, et al. A high precise E-nose for daily indoor air quality monitoring in living environment[J]. Integration, 2016, 58: 286-294.
      [9]
      DENG H B, ZHANG L. Design on ZigBee wireless sensor network node[J]. Key Eng Mater, 2011, 474/475/476: 283-286.
      [10]
      熊本海, 蒋林树, 杨亮, 等. 奶牛饲喂自动机电控制系统的设计与试验[J]. 农业工程学报, 2017, 33(7): 157-163.
      [11]
      SU B, MA X. Water level sensor based on a new design structure for irrigation water measurement[J]. Ifac Proceedings Volumes, 2010, 43(26): 39-44.
      [12]
      刘叶玲, 朱艳伟. 加权数据融合算法及其应用举例[J]. 西安科技大学学报, 2005, 25(2): 253-255.
      [13]
      袁明月, 鸿雁, 杨志, 等. 基于Grubbs准则的小波阈值改进研究[J]. 人民长江, 2014(14): 69-71.
      [14]
      涂川川, 朱凤武, 李铁. BP神经网络PID控制器在温室温度控制中的研究[J]. 中国农机化学报, 2012(2): 151-154.
      [15]
      韦庆志. 基于ARM的模糊PID温度控制系统的研究[D].镇江: 江苏大学, 2010.
      [16]
      KUMAR A, KUMAR V. A novel interval type-2 fractional order fuzzy PID controller: Design, performance evaluation, and its optimal time domain tuning[J]. Isa T, 2017, 68: 251-275.
      [17]
      余欢乐, 方永锋. 基于模糊自整定PID的温室温度控制系统设计及仿真[J]. 江苏农业科学, 2016, 44(12): 383-386.

    Catalog

      Article views (1963) PDF downloads (2656) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return