Citation: | YANG Yaoshuai, MEI Xiuqin, LI Qusheng, WEI Jia, ZHOU Xuefang, CHEN Kehan, ZHOU Ting. Effects of anoxic and aerobic cultivation conditions on cadmium accumulation and OsHMA2 expression in rice[J]. Journal of South China Agricultural University, 2017, 38(5): 24-29. DOI: 10.7671/j.issn.1001-411X.2017.05.005 |
To study the effects of anoxic and aerobic cultivation conditions on cadmium (Cd) uptake and transfer and OsHMA2 expression in rice shoots, and provide a theoretical basis for reducing the uptake and accumulation of heavy metals in rice.
Using rice cultivar ‘Wufengyou 2168’, pot experiments were performed hydroponically under anoxic(nutrient solution with agar) and aerobic(oxygenized nutrient solution) conditions. Cd uptake and accumulation, and OsHMA2 expression levels in rice shoots were analyzed at three Cd levels(0, 0.6, 1.2 mg·L–1).
Rice growth was not significantly inhibited by Cd under anoxic condition, but was significantly inhibited under aerobic condition with the dry weight of roots and above ground parts significantly decreased. At the Cd concentration of 0.6 and 1.2 mg·L–1, Cd accumulations in roots and above ground parts of rice under anoxic condition were lower than those under aerobic condition. Under both anoxic and aerobic conditions, Cd accumulation in roots increased with Cd concentration. For above ground parts of rice, Cd accumulation was not significantly different between 0.6 and 1.2 mg·L–1 Cd levels under anoxic condition, but increased with Cd concentration under aerobic condition. Compared with the control (0 mg·L–1 Cd), OsHMA2 expression level increased at the Cd concentration of 0.6 mg·L–1 but decreased at 1.2 mg·L–1 in shoots under both anoxic and aerobic condition, and OsHMA2 expression level in rice was higher under anoxic condition than those aerobic condition at each Cd level.
Anoxic culture can inhibit Cd uptake and accumulation in rice, and OsHMA2 expression decreases when Cd accumulation reaches a certain value.
[1] |
COLMER T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativaL.)[J]. Ann Bot-London, 2003, 91(2): 301-309.
|
[2] |
SATARUG S, BAKER J R, URBENJAPOL S, et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population[J]. Toxicol Lett, 2003, 137(1): 65-83.
|
[3] |
王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, 35(23): 7921-7929.
|
[4] |
UENO D, YAMAJI N, KONO I, et al. Gene limiting cadmium accumulation in rice[J]. Proc Natl Acad Sci, 2010, 107(38): 16500-16505.
|
[5] |
CHENG F M, ZHAO N C, XU H M, et al. Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China[J]. Sci Total Environ, 2006, 395(1/2/3): 156-166.
|
[6] |
崔玉静, 赵中秋, 刘文菊, 等. 镉在土壤–植物–人体系统中迁移积累及其影响因子[J]. 生态学报, 2003, 23(10): 2133-2143.
|
[7] |
IREMONGER S F, KELLY D L. The responses of four Irish wetland tree species to raised soil water levels[J]. New Phytol, 1988, 109(4): 491-497.
|
[8] |
纪雄辉, 梁永超, 鲁艳红, 等. 污染稻田水分管理对水稻吸收积累镉的影响及其作用机理[J]. 生态学报, 2007, 27(9): 3930-3939.
|
[9] |
徐加宽, 严贞, 袁玲花, 等. 稻米重金属污染的农艺治理途径及其研究进展[J]. 江苏农业科学, 2007, 35(5): 220-226.
|
[10] |
郑绍建, 胡蔼堂. 淹水对污染土壤镉形态转化的影响[J]. 环境科学学报, 1995, 15(2): 142-147.
|
[11] |
REDDY C N, PATRICK W H. Effect of redox potential and pH on the uptake of cadmium and lead by rice plants[J]. J Environ Qual, 1977, 6(3): 259-262.
|
[12] |
SATOH-NAGASAWA N, MORI M, NAKAZAWA N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant Cell Physiol, 2012, 53(1): 213-224.
|
[13] |
TAKAHASHI R, ISHIMARUY, SHIMO H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant Cell Environ, 2012, 35(11): 1948-1957.
|
[14] |
YAMAGUCHI N, ISHIKAWA S, ABE T, et al. Role of the node in controlling traffic of cadmium, zinc, and manganese in rice[J]. J Exp Bot, 2012, 63(7): 2729-2737.
|
[15] |
刘志彦, 杨俊兴, 田耀武, 等. 琼脂培养基质条件下砷在水稻幼苗中的积累转运[J]. 安徽农业科学, 2010, 38(4): 1755-1758.
|
[16] |
宋文恩, 陈世宝. 基于水稻根伸长的不同土壤中镉(Cd)毒性阈值(EC_x)及预测模型[J]. 中国农业科学, 2014, 47(17): 3434-3443.
|
[17] |
DAS P, SAMANTARAY S, ROUT G R. Studies on cadmium toxicity in plants: A review[J]. Environ Pollut, 1997, 665(1): 29-36.
|
[18] |
朱智伟, 陈铭学, 牟仁祥, 等. 水稻镉代谢与控制研究进展[J]. 中国农业科学, 2014, 47(18): 3633-3640.
|
[19] |
秦华东, 江立庚, 肖巧珍. 水分管理对免耕抛秧水稻根系生长及产量的影响[J]. 中国水稻科学, 2013, 27(2): 209-212.
|
[20] |
沈阿林, 刘春增, 张付申. 不同水分管理对水稻生长与氮素利用的影响[J]. 植物营养与肥料学报, 1997(2): 111-116.
|
[21] |
COLMER T D, COX M C, VOESENEK L A. Root aeration in rice (Oryza sativa): Evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations[J]. New Phytol, 2006, 170(4): 767-778.
|
[22] |
ARMSTRONG W. Oxygen diffusion from the roots of some britishbogplants[J]. Nature, 1964, 204: 801-802.
|
[23] |
ZHANG X K, ZHANG F S, MAO D R. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): Zinc uptake by Fe-deficient rice[J]. Plant Soil, 1998, 202(1): 33-39.
|
[24] |
胡莹, 黄益宗, 黄艳超, 等. 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响[J]. 农业环境科学学报, 2013, 32(3): 432-437.
|
[25] |
刘侯俊, 梁吉哲, 韩晓日, 等. 东北地区不同水稻品种对Cd的累积特性研究[J]. 农业环境科学学报, 2011, 30(2): 220-227.
|
[26] |
SASAKI A, YAMAJI N, MA J F, et al. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. J Exp Bot, 2014, 65(20): 6013-6021.
|
[27] |
薛永, 王苑螈, 姚泉洪, 等. 植物对土壤重金属镉抗性的研究进展[J]. 生态环境学报, 2014, 22(3): 528-534.
|
[28] |
周全, 王宏, 张迎信, 等. 不同镉浓度处理下水稻植株镉含量变化及其镉调控相关基因表达分析[J]. 中国水稻科学, 2016, 30(4): 380-388.
|
[29] |
KUKIER U, CHANEY R L. Growing rice grain with contronlled cadmium concentrations[J]. J Plant Nutr, 2002, 25(8): 1793-1820.
|
[30] |
龚伟群, 李恋卿, 潘根兴. 杂交水稻对Cd的吸收与籽粒积累: 土壤和品种的交互影响[J]. 环境科学, 2006, 27(8): 1647-1653.
|
[31] |
MOULIS J M. Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals[J]. Biometals, 2010, 23(5): 877-896.
|
[32] |
刘耀明, 余志涛, 朱文雅, 等. 三种重金属对中华稻蝗金属硫蛋白基因表达的影响[J]. 农业环境科学学报, 2015, 34(2): 227-232.
|