Citation: | LIANG Chenggang, CHEN Qingqing, SHI Taoxiong, CHEN Qijiao, MENG Ziye, CHEN Qingfu. Sequence analysis of mitogen-activated protein kinases of common buckwheat, Fagopyrum esculentum[J]. Journal of South China Agricultural University, 2016, 37(4): 90-96. DOI: 10.7671/j.issn.1001-411X.2016.04.015 |
To identify the difference of mitogen-activated protein kinase gene (MAPK) sequences among intraspecific common buckwheat, Fagopyrum esculentum, and study the sequence change during the chronical domestication process.
The common buckwheat varieties, containing nine cultivars and three wild types with shattering habit, were selected for PCR amplification of the conservative fragments of MAPK gene. Sequences were analyzed and protein conformations were predicted.
The full length of buckwheat MAPK cDNA was 2 835 bp, the length of the open readling frame (ORF) was 1 827 bp, and 609 amino acids containing the TDY tripeptide module were encoded. The buckwheat MARK belonged to the group D of plant MARK proteins. A total of 723 invariable sites and 70 polymorphic sites in MAPK sequence of common buckwheat were identified in 12 tested materials. We did not find difference among the ORF sequences of nine cultivars, neither among three wild types. There were eight differential nucleotides in the ORF of MAPK gene which encoded three amino acid polymorphisms between the cultivars and wild types. We found a change of α-helix conformation which was induced by transforming histidine (H) to tyrosine (Y) at the 13th site in the ORF of MARK.
The MAPK sequence is highly conserved and the 13th amino acid site has been highly consistently selected during the chronical process of domestication.
[1] |
陈庆富.荞麦属植物科学[M].北京:科学出版社, 2012: 1-9.
|
[2] |
AHMED A, KHALID N, AHMED A, et al. Phytochemicals and biofunctional properties of buckwheat: A review[J]. J Agri Sci, 2014, 152(3): 349-369. http://journals.cambridge.org/article_S0021859613000166
|
[3] |
WIJNGAGRD H H, ARENDT E K. Buckwheat[J]. Cereal Chem, 2006, 83(4): 391-401. http://d.old.wanfangdata.com.cn/Periodical/spyfx201707036
|
[4] |
SEDEJ I, SAKAČ M, MANDIĆ A, et al. Buckwheat (Fagopyrum esculentum Moench) grain and fractions: Antioxidant compounds and activities[J]. J Food Sci, 2012, 77(9): 954-959. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228172236/
|
[5] |
JACQUEMART A L, LEDENT J F O, QUINET M, et al. Is buckwheat (Fagopyrum esculentum Moench) still a valuable crop today?[J]. Eur J Plant Sci Biotech, 2012, 6(Special Issue 2): 1-10. https://core.ac.uk/display/20324795
|
[6] |
OHNISHI O. Discovery of the wild ancestor of common buckwheat[J]. Fagopyrum, 1991, 11:5-10. http://ci.nii.ac.jp/naid/10003760002
|
[7] |
OHNISHI O, ASANO N. Genetic diversity of Fagopyrum homotropicum, a wild species related to common buckwheat[J]. Gen Res Crop Evol, 1999, 46(4): 389-398. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0214852600
|
[8] |
朱斌, 梁颖.植物MAPK C族基因的研究进展[J].生物技术通报, 2012 (11): 27-31. http://d.old.wanfangdata.com.cn/Periodical/swjstb201211005
|
[9] |
崔菁菁, 刘玮.植物特有的TDY类丝裂原活化蛋白激酶研究综述[J].现代农业科技, 2008(14): 271-272. doi: 10.3969/j.issn.1007-5739.2008.14.200
|
[10] |
BOUDSOCQ M, DANQUAH A, DE ZÉLICOURT A, et al. Plant MAPK cascades: Just rapid signaling modules?[J]. Plant Signal Behav, 2015, 10(9): e1062197. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ022404057/
|
[11] |
张腾国, 刘玉冰, 夏小慧.植物MAP激酶级联途径研究进展[J].西北植物学报, 2008, 28(8): 1704-1714. doi: 10.3321/j.issn:1000-4025.2008.08.032
|
[12] |
龚小卫, 姜勇.丝裂原活化蛋白激酶(MAPK)生物学功能的结构基础[J].中国生物化学与分子生物学报, 2003, 19(1): 5-11. doi: 10.3969/j.issn.1007-7626.2003.01.002
|
[13] |
张茂迎, 宗晓娟, 李德全.植物MAPK级联途径参与调控ABA信号转导[J].生命科学, 2010, 22(8): 736-743. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002080192
|
[14] |
NAKAGAMI H, PITZSCHKE A, HIRT H. Emerging MAP kinase pathways in plant stress signalling[J]. Trends Plant Sci, 2005, 10(7): 339-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0210140020
|
[15] |
DANQUAH A, DE ZÉLICOURT A, COLCOMBET J, et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses[J]. Biotech Adv, 2014, 32(1): 40-52. http://www.sciencedirect.com/science/article/pii/S0734975013001626
|
[16] |
高华健, 任静, 蔡凤香, 等. MAPK调节水稻幼苗根系生长的分子机制[J].江苏农业科学, 2014, 42(1): 18-21. doi: 10.3969/j.issn.1002-1302.2014.01.006
|
[17] |
梁卫红, 毕佳佳, 彭威风, 等.水稻促分裂原活化蛋白激酶基因OsMPK14的克隆及表达分析[J].中国水稻科学, 2010, 24(2): 125-130. doi: 10.3969/j.issn.1001-7216.2010.02.04
|
[18] |
CHO S K, LARUE C T, CHEVALIER D, et al. Regulation of floral organ abscission in Arabidopsis thaliana[J]. Proc Nati Acad Sci USA, 2008, 105(40): 15629-15634. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2563077
|
[19] |
陈晴晴, 石桃雄, 陈庆富.荞麦不同种间BW10KD过敏蛋白基因序列比较[J].广东农业科学, 2013, 40(9): 133-139. doi: 10.3969/j.issn.1004-874X.2013.09.039
|
[20] |
ARNOLD K, BORDOLI L, KOPP J, et al. The SWISS-MODEL workspace: A web-based environment for protein structure homology modeling[J]. Bioinformatics, 2006, 22: 195-201. http://www.ncbi.nlm.nih.gov/pubmed/16301204?dopt=AbstractPlus
|
[21] |
SCHWEDE T, KOPP J, GUEX N, et al. Swiss-model: An automated protein homology-modeling server[J]. Nucl Acids Res, 2003, 31(13): 3381-3385. http://d.old.wanfangdata.com.cn/Periodical/smdhx200601021
|
[22] |
GUEX N, PEITSCH M C. Swiss-model and the swiss-pdb viewer: An environment for comparative protein modeling[J]. Electrophoresis, 1997, 18: 2714-2723. doi: 10.1002/(ISSN)1522-2683
|
[23] |
岳鹏, 陈庆富.植物种子蛋白的分子生物学研究进展[J].种子, 2011, 30(1): 58-62. doi: 10.3969/j.issn.1001-4705.2011.01.017
|
[24] |
肖文娟, 宾金华, 武波.植物体中的MAPK[J].植物学通报, 2004, 21(2): 205-215. doi: 10.3969/j.issn.1674-3466.2004.02.011
|
[25] |
李凤梅.植物丝裂原活化蛋白激酶激酶的生物信息学分析[J].北方园艺, 2010(3): 196-199. http://d.old.wanfangdata.com.cn/Periodical/bfyany201003075
|
[26] |
MENG X, WANG H, HE Y, et al. A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation[J]. Plant Cell, 2012, 24(12): 4948-4960. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229555557
|