• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
WANG Pei, ZENG Sixiao, HE Jie. Simulation and verification for obstacle avoidance path tracking of unmanned agricultural machinery[J]. Journal of South China Agricultural University, 2024, 45(3): 416-426. DOI: 10.7671/j.issn.1001-411X.202308002
Citation: WANG Pei, ZENG Sixiao, HE Jie. Simulation and verification for obstacle avoidance path tracking of unmanned agricultural machinery[J]. Journal of South China Agricultural University, 2024, 45(3): 416-426. DOI: 10.7671/j.issn.1001-411X.202308002

Simulation and verification for obstacle avoidance path tracking of unmanned agricultural machinery

More Information
  • Received Date: August 01, 2023
  • Available Online: March 03, 2024
  • Published Date: April 01, 2024
  • Objective 

    In order to facilitate the verification of the effectiveness of obstacle avoidance path tracking for unmanned agricultural machinery, reduce the number of actual unmanned agricultural machine tests and consumables, a simulation verification method for obstacle avoidance path tracking for unmanned agricultural machinery was designed, and a simulation verification application system was constructed.

    Method 

    Based on unmanned agricultural machinery, an integrated simulation and verification application system was constructed by integrating real complex terrain environment simulation, actual operation agricultural machinery simulation, and path planning algorithm implantation. Based on three-dimensional SLAM technology, environmental point cloud data was collected to achieve simulation modeling of farmland terrain environment. A simulation modeling of agricultural machinery was completed using unmanned agricultural machinery combined with ackermann steering mechanical structure. A TEB local path planning algorithm based on agricultural machinery dynamics constraints was proposed. Path planning tracking and obstacle avoidance were implemented in the simulation verification application system, and the effectiveness of the algorithm was verified through multiple tests.

    Result 

    The comparison test of obstacle avoidance path tracking effectiveness and the verification test of obstacle avoidance path tracking smoothness showed that the unmanned agricultural machine could effectively avoid obstacles dynamically during driving, with the shortest effective obstacle avoidance distance of 4.1 m. The path tracking control effect was good. When the distance between obstacles was greater than 5.0 m, the controllable average error was within 0.430 5 m, and the root mean square error was within 0.315 1 m. When the distance between obstacles was 4.5−5.0 m, the controllable average error was within 1.353 8 m, and the root mean square error was within 1.612 6 m.

    Conclusion 

    The improved TEB algorithm proposed in this article has strong operational capability and high operational accuracy, which meets the needs of simulation verification for obstacle avoidance path tracking in agricultural machinery navigation. This algorithm can be applied to obstacle avoidance path tracking of unmanned agricultural machinery in actual farmland environments in the future. This application system is easy to expand and can provide a foundation for the optimization design research of agricultural machinery operation status in precision agriculture for various complex working environments.

  • [1]
    罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17.
    [2]
    尚业华, 王昊, 孟志军, 等. 基于激光雷达的稻麦收获边界检测与自动对齐系统研究[J]. 农业机械学报, 2023, 54(5): 19-28.
    [3]
    张朝宇, 董万静, 熊子庆, 等. 履带式油菜播种机模糊自适应纯追踪控制器设计与试验[J]. 农业机械学报, 2021, 52(12): 105-114.
    [4]
    丛佩超, 崔利营, 万现全, 等. 基于改进ORB-SLAM2的果园喷药机器人定位与稠密建图算法[J]. 农业机械学报, 2023, 54(7): 45-55.
    [5]
    刘慧, 段云鹏, 沈跃. 果园移动机器人激光雷达双源信息融合实时导航方法[J]. 农业机械学报, 2023, 54(8): 249-258.
    [6]
    齐咏生, 姚辰武, 刘利强, 等. 基于信息融合描述子的机器人复杂场景位姿估计算法[J]. 农业机械学报, 2022, 53(10): 293-305.
    [7]
    陈子文, 胡宗锐, 熊扬凡, 等. 树冠环绕式仿形对靶施药机设计与试验[J]. 农业工程学报, 2023, 39(3): 23-32.
    [8]
    刘慧, 张世义, 段云鹏, 等. 基于改进双向RRT~*的果园机器人运动规划算法[J]. 农业机械学报, 2022, 53(11): 31-39.
    [9]
    胡炼, 王志敏, 汪沛, 等. 基于激光感知的农业机器人定位系统[J]. 农业工程学报, 2023, 39(5): 1-7.
    [10]
    郑路, 张啸, 王建国, 等. 基于宏微结合的田间作业机器人路径规划[J]. 农业机械学报, 2023, 54(9): 13-26.
    [11]
    郑凯林, 韩宝玲, 王新达. 基于改进TEB算法的阿克曼机器人运动规划系统[J]. 科学技术与工程, 2020, 20(10): 3997-4003.
    [12]
    王宾. 基于RRT的虚拟现实环境中ROS机器人路径规划研究[J]. 呼伦贝尔学院学报, 2023, 31(1): 112-116.
    [13]
    郑凯强. 基于软件定义的VR控制无人车架构研究[D]. 杭州: 浙江理工大学, 2022.
    [14]
    李献雯. 基于数字孪生的病害路面交通场景建模[D]. 西安: 西安工业大学, 2023.
    [15]
    王辉, 王桂民, 罗锡文, 等. 基于预瞄追踪模型的农机导航路径跟踪控制方法[J]. 农业工程学报, 2019, 35(4): 11-19.
    [16]
    胡子威. 基于多线激光雷达的室外移动机器人SLAM研究与实现[D]. 上海: 上海师范大学, 2023.
    [17]
    FAN X, WANG Y, ZHANG Z. An evaluation of lidar-based 2D SLAM techniques with an exploration mode[J]. Journal of Physics: Conference Series, 2021, 1905(1): 012021. doi: 10.1088/1742-6596/1905/1/012021.
    [18]
    SUPOD K, MONGKOL E, UKRIT T. High-accuracy position-aware robot for agricultural automation using low-cost IMU-coupled triple-laser-guided (TLG) system[J]. IEEE Access, 2021, 9: 54325-54337.
    [19]
    陆海英, 张成铭, 郭艳秋, 等. 基于阿克曼原理的三轴车辆全轮转向最优控制[J]. 广西大学学报(自然科学版), 2020, 45(3): 558-568.
    [20]
    宫金良, 马全坤, 张彦斐. 阿克曼转向农业机器人的多级模糊控制避障[J]. 农机化研究, 2021, 43(4): 196-201.
    [21]
    李萍, 杨晓辉, 房启飞, 等. 基于阿克曼理论的四轮转向汽车转向梯形优化设计[J]. 北京汽车, 2021(3): 16-20.
    [22]
    YANG L G, CHI H F. SLAM self: Cruise vehicle based on ROS platform[C]//2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). Guangzhou, China: IEEE, 2021: 6-11. doi: 10.1109/ICCECE51280.2021.9342204
    [23]
    张文玥, 娄小平, 陈福笛. 移动机器人多传感器融合定位仿真研究[J]. 计算机仿真, 2023, 40(3): 436-441.
    [24]
    LIN Z N, YUE M, CHEN G Y , et al. Path planning of mobile robot with PSO-based APF and fuzzy-based DWA subject to moving obstacles[J]. Transactions of the Institute of Measurement and Control, 2022, 44(1): 121-132. doi: 10.1177/01423312211024798
  • Cited by

    Periodical cited type(3)

    1. 罗锡文,谷秀艳,胡炼,赵润茂,岳孟东,何杰,黄培奎,汪沛. 大田无人化智慧农场农田边界识别技术研究现状与展望. 农业机械学报. 2025(02): 1-18 .
    2. 冯国练. 无人驾驶农机路径跟踪控制方法探索研究. 现代农机. 2025(02): 68-70 .
    3. 寇浩,曲双为. 基于AHP-FCE的花椒采摘机器人设计. 工业设计. 2024(06): 146-150 .

    Other cited types(1)

Catalog

    Article views (1314) PDF downloads (68) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return