Citation: | QUAN Hongting, ZHU Jieyi, LONG Fengling, et al. Responses of Chukrasia tabularis seedling growth and physiological characteristics to drought stress[J]. Journal of South China Agricultural University, 2025, 46(4): 1-9. |
To investigate the effects of drought stress on the growth and physiological characteristics of Chukrasia tabularis, and reveal the physiological response mechanism of C. tabularis seedlings to adapt to drought environments.
Taking half-year-old C. tabularis seedlings as the research subjects, four treatments were set up: Light drought (65%−70% of field water capacity), moderate drought (50%−55% of field water capacity), severe drought (35%−40% of field water capacity), and control (80%−85% of field water capacity). The growth indicators, photosynthetic parameters, and physiological characteristics of C. tabularis seedlings were measured.
Moderate and severe drought significantly reduced the plant height growth, leaf width, leaf length and leaf area of C. tabularis seedlings (P<0.05), while light drought promoted root growth. The root length (
A field water capacity of 65%−70% facilitates root growth, biomass accumulation, and enhances photosynthetic efficiency in C. tabularis seedlings, indicating that appropriate drought is generally advantageous for the growth of C. tabularis seedlings.
[1] |
VAN VLIET M T H, JONES E R, FLÖRKE M, et al. Global water scarcity including surface water quality and expansions of clean water technologies[J]. Environmental Research Letters, 2021, 16(2): 024020. doi: 10.1088/1748-9326/abbfc3
|
[2] |
HAO Y, YUAN X, ZHANG M. Enhanced relationship between seasonal soil moisture droughts and vegetation under climate change over China[J]. Agricultural and Forest Meteorology, 2024, 358: 110258. doi: 10.1016/j.agrformet.2024.110258
|
[3] |
FAROOQ M, WAHID A, ZAHRA N, et al. Recent advances in plant drought tolerance[J]. Journal of Plant Growth Regulation, 2024, 43(10): 3337-3369. doi: 10.1007/s00344-024-11351-6
|
[4] |
BASSIOUNI M, MANZONI S, VICO G. Optimal plant water use strategies explain soil moisture variability[J]. Advances in Water Resources, 2023, 173: 104405. doi: 10.1016/j.advwatres.2023.104405
|
[5] |
WOLF S, PAUL-LIMOGES E. Drought and heat reduce forest carbon uptake[J]. Nature Communications, 2023, 14(1): 6217. doi: 10.1038/s41467-023-41854-x
|
[6] |
王彬, 陈敏氡, 林亮, 等. 植物干旱胁迫的信号通路及相关转录因子研究进展[J]. 西北植物学报, 2020, 40(10): 1792-1806. doi: 10.7606/j.issn.1000-4025.2020.10.1792
|
[7] |
SELEIMAN M F, AL-SUHAIBANI N, ALI N, et al. Drought stress impacts on plants and different approaches to alleviate its adverse effects[J]. Plants, 2021, 10(2): 259. doi: 10.3390/plants10020259
|
[8] |
SHEN J, ZHANG Y, ZHANG L, et al. Bioactivity-guided isolation of anti-inflammatory limonins from Chukrasia tabularis[J]. Food Science & Nutrition, 2022, 10(12): 4216-4225.
|
[9] |
张捷, 王青, 仲崇禄, 等. 生长基质和激素对麻楝嫩枝扦插生根的影响[J]. 植物研究, 2019, 39(3): 380-386. doi: 10.7525/j.issn.1673-5102.2019.03.008
|
[10] |
ANDRADE C, FERRERES F, GOMES N G M, et al. Valorisation of the industrial waste of Chukrasia tabularis A. Juss: Characterization of the leaves phenolic constituents and antidiabetic-like effects[J]. Industrial Crops and Products, 2022, 185: 115100. doi: 10.1016/j.indcrop.2022.115100
|
[11] |
陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2015: 64-72.
|
[12] |
SUN Y, WANG C, CHEN H Y H, et al. Response of plants to water stress: A meta-analysis[J]. Frontiers in Plant Science, 2020, 11: 978. doi: 10.3389/fpls.2020.00978
|
[13] |
WU J, WANG J, HUI W, et al. Physiology of plant responses to water stress and related genes: A review[J]. Forests, 2022, 13(2): 324. doi: 10.3390/f13020324
|
[14] |
MUNDIM F M, PRINGLE E G. Whole-plant metabolic allocation under water stress[J]. Frontiers in Plant Science, 2018, 9: 852. doi: 10.3389/fpls.2018.00852
|
[15] |
CAO Y, YANG W, MA J, et al. An integrated framework for drought stress in plants[J]. International Journal of Molecular Sciences, 2024, 25(17): 9347. doi: 10.3390/ijms25179347
|
[16] |
GAO J, ZHAO J, SHI P. Multiple response mechanisms of plants to drought stress[J]. Plants 2024, 13(20): 2918. doi: 10.3390/plants13202918
|
[17] |
KOU X, HAN W, KANG J. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions[J]. Frontiers in Plant Science, 2022, 13: 1085409. doi: 10.3389/fpls.2022.1085409
|
[18] |
TYAGI V, SINGH S P, SINGH R D, et al. Chir pine and banj oak responses to pre-monsoon drought across slope aspects and positions in Central Himalaya.[J]. Environmental Monitoring and Assessment, 2023, 195(2): 258. doi: 10.1007/s10661-022-10860-9
|
[19] |
高冠龙, 冯起, 张小由, 等. 植物叶片光合作用的气孔与非气孔限制研究综述[J]. 干旱区研究, 2018, 35(4): 929-937.
|
[20] |
GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269. doi: 10.1126/science.aaz7614
|
[21] |
王方琳, 柴成武, 赵鹏, 等. 3种荒漠植物光合及叶绿素荧光对干旱胁迫的响应及抗旱性评价[J]. 西北植物学报, 2021, 41(10): 1755-1765. doi: 10.7606/j.issn.1000-4025.2021.10.1755
|
[22] |
HAGHPANAH M, HASHEMIPETROUDI S, ARZANI A, et al. Drought tolerance in plants: Physiological and molecular responses[J]. Plants, 2024, 13(21): 2962. doi: 10.3390/plants13212962
|
[23] |
ZAIT Y, SHEMER O E, COCHAVI A. Dynamic responses of chlorophyll fluorescence parameters to drought across diverse plant families[J]. Physiologia Plantarum, 2024, 176(5): e14527. doi: 10.1111/ppl.14527
|
[24] |
王丽华, 余凌帆, 李欣欣, 等. 水分胁迫对3个品种油橄榄幼苗生理指标的影响[J]. 经济林研究, 2023, 41(3): 296-302.
|
[25] |
冯潇, 田玲, 尹群, 等. 3种玉兰幼苗生长和生理特性对干旱胁迫的响应[J]. 北京林业大学学报, 2024, 46(9): 57-67. doi: 10.12171/j.1000-1522.20230312
|
[26] |
姜鹏, 秦美欧, 蔡福, 等. 干旱-复水联动对东北春玉米光合生理与产量的影响[J]. 干旱气象, 2023, 41(2): 207-214. doi: 10.11755/j.issn.1006-7639(2023)-02-0207
|
[27] |
OZTURK M, TURKYILMAZ UNAL B, GARCIA-CAPARROS P, et al. Osmoregulation and its actions during the drought stress in plants[J]. Physiologia Plantarum, 2021, 172(2): 1321-1335.
|
[28] |
席璐璐, 缑倩倩, 王国华, 等. 荒漠绿洲过渡带一年生草本植物对干旱胁迫的响应[J]. 生态学报, 2021, 41(13): 5425-5434.
|
[29] |
王硕, 贾潇倩, 何璐, 等. 作物对干旱胁迫的响应机制及提高作物抗旱能力的调控措施研究进展[J]. 中国农学通报, 2022, 38(29): 31-44. doi: 10.11924/j.issn.1000-6850.casb2021-1042
|
[30] |
DU Y, ZHAO Q, CHEN L, et al. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings[J]. Plant Physiology and Biochemistry, 2020, 146: 1-12. doi: 10.1016/j.plaphy.2019.11.003
|
[31] |
王凯悦, 陈芳泉, 黄五星. 植物干旱胁迫响应机制研究进展[J]. 中国农业科技导报, 2019, 21(2): 19-25.
|
[32] |
BANDURSKA H, NIEDZIELA J, PIETROWSKA-BOREK M, et al. Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L. ) genotypes of different origin[J]. Plant Physiology and Biochemistry, 2017, 118: 427-437. doi: 10.1016/j.plaphy.2017.07.006
|
[33] |
DE FREITAS P A, DE SOUZA MIRANDA R, MARQUES E C, et al. Salt tolerance induced by exogenous proline in maize is related to low oxidative damage and favorable ionic homeostasis[J]. Journal of Plant Growth Regulation, 2018, 37(3): 911-924. doi: 10.1007/s00344-018-9787-x
|
[34] |
秦岭, 陈二影, 张艳亭, 等. 干旱及复水对谷子脯氨酸积累和SiP5CR基因表达的影响[J]. 分子植物育种, 2018, 16(22): 7460-7465.
|
[35] |
郭迦南, 赵倚澎, 杨元植, 等. 超氧化物歧化酶在植物响应干旱、盐碱和冷害中的作用[J]. 植物研究, 2024, 44(4): 481-490. doi: 10.7525/j.issn.1673-5102.2024.04.001
|
[36] |
BATOOL T, ALI S, SELEIMAN M F, et alPlant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities[J]. Scientific Reports, 2020, 10(1): 16975. doi: 10.1038/s41598-020-73489-z
|
[37] |
ZHANG A, LIU M, GU W, et al. Effect of drought on photosynthesis, total antioxidant capacity, bioactive component accumulation, and the transcriptome of atractylodes lancea[J]. BMC Plant Biology, 2021, 21(1): 293. doi: 10.1186/s12870-021-03048-9
|
[38] |
李安, 舒健虹, 刘晓霞, 等. 干旱胁迫下枯草芽孢杆菌对玉米种子抗旱性及生理指标的影响[J]. 作物杂志, 2021(6): 217-223.
|
[39] |
HASHIMOTO Y, MAKITA N, DANNOURA M, et al. The composition of non-structural carbohydrates affects the respiration and morphology of tree fine roots in Japan Alps[J]. Rhizosphere, 2023, 26: 100705. doi: 10.1016/S2452-2198(23)00069-1
|
1. |
李轩宇,郑天尧,王越. 基于深度学习的视频信号降噪技术研究. 电视技术. 2025(01): 220-222 .
![]() |