Citation: | YANG Ming, LI Yalan, WANG Qinglai, LIU Jingshun, LIU Zhenyun, LUO Xufang, WU Zhenfang, CAI Gengyuan. Molecular marker technology and application in pig breeding[J]. Journal of South China Agricultural University, 2019, 40(S1): 127-131. |
To explore the application methods of molecular markers in pig breeding, we reviewed the research progress of major effect genes and causal mutation sites for important economic traits, classified the available molecular markers and tracked the application effect of some molecular markers assisted breeding in Wens Group. The application methods of molecular markers in pig breeding were summarized. Molecular marker assisted selection would be widely used in pig breeding.
[1] |
LANDE R, THOMPSON R. Efficiency of marker-assisted selection in the improvement of quantitative traits[J]. Genetics, 1990, 124:743-756. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YCZZ200104020.htm
|
[2] |
MEUWISSEN T H E. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing[J]. J Dairy Sci, 1992, 75:1651-1659. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1206390
|
[3] |
鲁绍雄, 吴常信.动物遗传标记辅助选择研究及其应用[J].遗传, 2002, 24(3):359-362. doi: 10.3321/j.issn:0253-9772.2002.03.035
|
[4] |
刘鹏渊, 朱军.标记辅助选择改良数量性状的研究进展[J].遗传, 2001, 23(4):375-380. doi: 10.3321/j.issn:0253-9772.2001.04.022
|
[5] |
VAN LAERE A S, NGUYEN M, BRAUNSCHWEIG M, et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig[J]. Nature, 2003, 425:832-836. doi: 10.1038-nature02064/
|
[6] |
KIM KS, LARSEN N, SHORT T, et al. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits[J]. Mamm Genome, 2000, 11(2):131-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89e83b3515ea197a1c4ad635da7023f9
|
[7] |
MIKAWA S, MOROZUMI T, SHIMANUKI S-L, et al. Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1)[J]. Genome Res, 2007, 17(5):586-593. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1855175
|
[8] |
FAN Y, XING Y, ZHANG Z, et al. A further look at porcine chromosome 7 reveals VRTN variants associated with vertebral number in Chinese and Western pigs[J]. PLoS One, 2013, 8(4):e62534.
|
[9] |
YANG J, HUANG L, YANG M, et al. Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs[J]. Sci Rep, 2016, 19(6):19240. http://www.ncbi.nlm.nih.gov/pubmed/26781738
|
[10] |
SIRONEN A, THOMSEN B, ANDERSSON M, et al. An intronic insertion in KPL2 results in aberrant splicing and causes the immotile short-tail sperm defect in the pig[J]. Proc Natl Acad Sci U S A, 2006, 103(13):5006-5011. doi: 10.1073/pnas.0506318103
|
[11] |
ROTHSCHILD M F. The estrogen receptor locus is associated with a major gene influencing litter size in pigs[J]. Proc Natl Acad Sci USA, 1996, 93:201-205. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_40206
|
[12] |
赵要风, 李宁, 肖璐, 等.猪FSHβ亚基基因结构区逆转座子插入突变及其与猪产仔数关系的研究[J].中国科学(C辑), 1999, 29(1):81-86. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cc199901012
|
[13] |
施启顺.分子育种成果之猪经济性状主效基因研究进展[J].动物科学与动物医学, 2005(9):24-25. doi: 10.3969/j.issn.1673-5358.2005.09.010
|
[14] |
FUJⅡ J, OTSU K, ZORZATO F, et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia[J]. Science, 1991, 253(5018):448-451. doi: 10.1126/science.1862346
|
[15] |
MILAN D, JEON JT, LOOFT C, et al. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle[J]. Science, 2000, 288(5469):1248-1251. doi: 10.1126-science.288.5469.1248/
|
[16] |
MA J, YANG J, ZHOU L, et al. A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle[J]. PLoS Genet, 2014, 10(10):e1004710. doi: 10.1371/journal.pgen.1004710
|
[17] |
王重龙, 陶立.猪育种中DNA标记辅助选择方法的研究进展[J].中国畜牧兽医, 2008, 35(2): 42-46. http://d.old.wanfangdata.com.cn/Periodical/zgxmsy200802012
|
[18] |
VOGELI P, MEIJERINK E, FRIES R, et al. A molecular test for the detection of E.coli F18 receptors: A breakthrough in the struggle against oedema and post-weaning diarrhoea in swine[J]. Schweiz Arch Tierheilk, 1997, 139(11):479-484. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM9480539
|
[19] |
KLUKOWSKA J, URBANIAK B, SWITONSKI M, et al. High frequency of M307A mutation at FUT1 locus, causing resistance to oedema disease, in an autochthonous polish pig breed[J]. J Anim Breed Genet, 1999, 116(6):519-524. doi: 10.1046/j.1439-0388.1999.00225.x
|
[20] |
REN J, YAN X, AI H, et al. Susceptibility towards enterotoxigenic Escherichia coli F4ac diarrhea is governed by the MUC13 gene in pigs[J]. PLoS One, 2012, 7(9):e44573. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3440394
|
[21] |
MEUWISSEN T H E, Goddard ME: The use of marker haplotypes in animal breeding schemes[J]. Genet Sel Evol, 1996, 28:161-176. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2708299
|
[22] |
MEIJERINK E, FRIES R, V?GELI P, et al. Two a (1, 2) fucosyltransferase genes on porcine chromo-some 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci[J]. Mammalian Genome, 1997, 8:736-741. doi: 10.1007/s003359900556
|
[23] |
CODDENS A, VERDONCK F, MULINGE M, et al. The possibility of positive selection for both F18(+)Escherichia coli and stress resistant pigs opens new perspectives for pig breeding[J]. Vet Microbiol, 2008, 126(1/2/3):210-215. http://www.sciencedirect.com/science/article/pii/S0378113507003215
|
[24] |
RUAN G R, XING Y Y, FAN Y, et al. Genetic variation at RYR1, IGF2, FUT1, MUC13 and KPL2 mutations affecting production traits in Chinese commercial pig breeds[J]. Cezh J Anim Sci, 2013, 58(2):65-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a9f9f0dec4aaa38ed19274176a10967
|
[25] |
MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157:1819-1829. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1461589
|