Citation: | XIE Jing, DUAN Nishan, KONG Lijie, et al. Prediction the potential suitable areas of Tithonia diversifolia A. Gray and Synedrella nodiflora (L.) Gaertn. in China based on the optimized MaxEnt model[J]. Journal of South China Agricultural University, 2025, 46(4): 1-10. |
This paper aims to study the current and the potential suitable areas of the invasive alien weeds Tithonia diversifolia A. Gray and Synedrella nodiflora (L.) Gaertn. in China, and to explore the main environmental variables affecting the distribution of these two plants. It provides a theoretical reference for the invasion monitoring of these two invasive weeds and for mastering their diffusion and distribution patterns.
Fit analysis on the species distribution data and correlation analysis on the environmental variables were employed, and ENMeval was used to optimize the model of the species distribution data. The obtained distribution data, environmental variables, regularization multiplier (RM) and feature combination (FC) parameters were imported into MaxEnt for distribution prediction. Then, ArcGIS was used to obtain the current and potential suitable distribution areas.
The standard deviation of seasonal temperature change and the average temperature in the coldest quarter were the main environmental variables affecting the distribution of T. diversifolia, and the sum of their contribution rates reached 70.8%. The range of annual average temperature change, annual average precipitation and precipitation in the wettest month were the main environmental variables affecting the distribution of S. nodiflora, with the sum of their contribution rates reaching 76.7%. The moderate and high suitable areas of these two plants were distributed in southern Tibet, Yunnan, Guangxi, Guangdong, Fujian, Hainan and Taiwan of China.
Both T. diversifolia and S. nodiflora. have successfully invaded China, and are currently mainly distributed in some tropical and subtropical areas in southern China. It is predicted that they have a trend of gradually expanding towards the inland. Therefore, stronger precautions should be taken against their invasion.
[1] |
ADKINS S, SHABBIR A. Biology, ecology and management of the invasive Parthenium weed (Parthenium hysterophorus L. )[J]. Pest Management Science, 2014, 70(7): 1023-1029. doi: 10.1002/ps.3708
|
[2] |
KARIMMOJENI H, RAHIMIAN H, ALIZADEH H, et al. Competitive ability effects of Datura stramonium L. and Xanthium strumarium L. on the development of maize (Zea mays) seeds[J]. Plants, 2021, 10(9): 1922. doi: 10.3390/plants10091922.
|
[3] |
THURKOW F, LORENZ C G, PAUSE M, et al. Advanced detection of invasive neophytes in agricultural landscapes: A multisensory and multiscale remote sensing approach[J]. Remote Sensing, 2024, 16(3): 500. doi: 10.3390/rs16030500
|
[4] |
王桔红, 陈文, 彭玉姣, 等. 不同入侵程度两种菊科植物化学计量特征及其影响因素[J]. 广西植物, 2024, 44(8): 1469-1480. doi: 10.11931/guihaia.gxzw202304073
|
[5] |
HAO Q, MA J S. Invasive alien plants in China: An update[J]. Plant Diversity, 2023, 45(1): 117-121. doi: 10.1016/j.pld.2022.11.004
|
[6] |
WANG F, HUANG J, ZHANG N, et al. Exploring plant characteristics for constructing a pre-border weed risk assessment for China[J]. Biological Invasions, 2024, 26(4): 909-933. doi: 10.1007/s10530-023-03215-z
|
[7] |
王四海, 孙卫邦, 成晓. 逃逸外来植物肿柄菊在云南的生长繁殖特性、地理分布现状及群落特征[J]. 生态学报, 2004, 24(3): 444-449. doi: 10.3321/j.issn:1000-0933.2004.03.008
|
[8] |
赵金丽, 马友鑫, 朱华, 等. 云南省南部山地7种主要入侵植物沿公路两侧的扩散格局[J]. 生物多样性, 2008, 16(4): 369-380. doi: 10.3321/j.issn:1005-0094.2008.04.008
|
[9] |
焦杨, 程希平, 王四海. 外来入侵植物肿柄菊的异速生长特征[J]. 西部林业科学, 2020, 49(1): 156-161.
|
[10] |
NICHOLAS HIND D J. The typification of Verbesina nodiflora L. : The generitype of Synedrella Gaertn. (Compositae: Heliantheae: Ecliptinae)[J]. Kew Bulletin, 2016, 71(2): 1-5.
|
[11] |
LUO L D, ZHANG P, OU X K, et al. Development of EST-SSR markers for the invasive plant Tithonia diversifolia (Asteraceae)[J]. Applications in Plant Sciences, 2016, 4(7): 1600011. doi: 10.3732/apps.1600011.
|
[12] |
ZHAO X F, LEI M, WEI C H, et al. Assessing the suitable regions and the key factors for three Cd-accumulating plants (Sedum alfredii, Phytolacca americana, and Hylotelephium spectabile) in China using MaxEnt model[J]. Science of the Total Environment, 2022, 852(3): 158202. doi: 10.1016/j.scitotenv.2022.158202.
|
[13] |
ZHAO Z Y, XIAO N W, SHEN M, et al. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China[J]. Science of The Total Environment, 2022, 842(10): 156867. doi: 10.1016/j.scitotenv.2022.156867.
|
[14] |
张惠惠, 张国帅, 张智, 等. 最大熵模型在植物生态评估领域的应用[J]. 安徽农业科学, 2024, 52(22): 248-257. doi: 10.3969/j.issn.0517-6611.2024.22.049
|
[15] |
邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用[J]. 生物多样性, 2011, 19(3): 295-302.
|
[16] |
贺一鸣, 王驰, 王海涛, 等. 气候变化对蒙古莸潜在适生区的影响[J]. 草地学报, 2023, 31(2): 540-550.
|
[17] |
袁俊杰, 龙阳, 李凯兵, 等. 多斑矢车菊在我国的适生性分析及入侵风险评估[J]. 中国植保导刊, 2024, 44(11): 91-96. doi: 10.3969/j.issn.1672-6820.2024.11.019
|
[18] |
陈剑, 王四海, 杨卫, 等. 外来入侵植物肿柄菊群落动态变化特征[J]. 生态学杂志, 2020, 39(2): 469-477.
|
[19] |
SUN Y M, FERNIE A R. Plant secondary metabolism in a fluctuating world: Climate change perspectives[J]. Trends in Plant Science, 2024, 29(5): 560-571. doi: 10.1016/j.tplants.2023.11.008
|
[20] |
WEI L J, WANG G H, XIE C P, et al. Predicting suitable habitat for the endangered tree Ormosia microphylla in China[J]. Scientific Reports, 2024, 14(1): 10330. doi: 10.1038/s41598-024-61200-5.
|
[21] |
王鹏, 田姗姗, 宋盈盈, 等. 基于MaxEnt预测3种柃属植物在中国的潜在适生区[J]. 西南大学学报(自然科学版), 2024, 46(12): 84-99.
|
[22] |
ESGUERRA D, MUNCH S B. Accounting for observation noise in equation‐free forecasting: The hidden-Markov S-map[J]. Methods in Ecology and Evolution, 2024, 15(8): 1347-1359. doi: 10.1111/2041-210X.14337
|
[23] |
吴甜, 申科, 贾涛, 等. 外来植物肿柄菊对入侵生境的生态影响及其防控对策[J]. 生物安全学报(中英文), 2024, 33(1): 7-11.
|
[24] |
中国科学院中国植物志编辑委员会. 中国植物志: 第75卷[M]. 北京: 科学出版社, 2016: 65-70.
|