HU Xihong, MA Xu, WANG Yuwei, et al. Optimization of variable-speed weighing detection and intelligent regulation device for seeding amount in rice seedling trays[J]. Journal of South China Agricultural University, 2025, 46(5): 678-691. DOI: 10.7671/j.issn.1001-411X.202502013
    Citation: HU Xihong, MA Xu, WANG Yuwei, et al. Optimization of variable-speed weighing detection and intelligent regulation device for seeding amount in rice seedling trays[J]. Journal of South China Agricultural University, 2025, 46(5): 678-691. DOI: 10.7671/j.issn.1001-411X.202502013

    Optimization of variable-speed weighing detection and intelligent regulation device for seeding amount in rice seedling trays

    More Information
    • Received Date: February 13, 2025
    • Revised Date: March 20, 2025
    • Accepted Date: March 30, 2025
    • Available Online: July 01, 2025
    • Published Date: July 03, 2025
    • Objective 

      In order to improve the detection accuracy of the seeding amount in rice seedling trays and achieve precise regulation of the seeding amount, a variable-speed weighing detection and intelligent regulation device for seeding amount in rice seedling trays was designed.

      Method 

      The seedling tray mass variable-speed weighing mechanism composed of front and rear driving wheels was constructed. The front driving wheel created a spacing between the front and rear seedling trays, ensuring that the seedling trays could achieve the static non-contact precise weighing on the variable-speed weighing mechanism. The rear driving wheel enabled the weighed seedling tray to automatically catch up with the front seedling tray to eliminate the spacing, ensuring continuous conveying of the seedling trays without intervals on the seedling-raising production line. A through-beam photoelectric sensor was used to accurately detect whether the seedling tray had reached the weighing position. The weighing signals were processed by the combined Butterworth and Kalman filtering, which effectively suppressed the interfering factors and further improved the detection accuracy of the seeding amount in the seedling trays. With the programmable logic controller (PLC) as the control core, the deviation between the detected value of the seeding amount in the seedling trays and the set value was compared and analyzed. According to the established regulation model for the seeding amount of rice bud seeds in the seedling trays, intelligent and precise regulation was realized.

      Result 

      Under the condition of a seedling raising productivity of 500 trays per hour, the average detection accuracy of the seeding amount in the seedling trays was 96.64%. For hybrid rice with a seeding amount in a single seedling tray ranging from 50 to 80 g, the average regulation accuracy and coefficient of variation were 93.69% and 2.01%, respectively. For conventional rice with a seeding amount in a single seedling tray ranging from 81 to 360 g, the average regulation accuracy and coefficient of variation were 96.01% and 3.13%, respectively.

      Conclusion 

      The detection accuracy and regulation performance of the device designed in this study are significantly superior to those of existing devices, which has practical application value for improving the quality of seedlings and ensuring the performance of transplantation.

    • [1]
      李泽华, 马旭, 陈林涛, 等. 育秧播种密度与取秧面积耦合对杂交稻机插质量和产量的影响[J]. 农业工程学报, 2019, 35(24): 20-30. doi: 10.11975/j.issn.1002-6819.2019.24.003
      [2]
      李泽华, 马旭, 李秀昊, 等. 水稻栽植机械化技术研究进展[J]. 农业机械学报, 2018, 49(5): 1-20. doi: 10.6041/j.issn.1000-1298.2018.05.001
      [3]
      李泽华, 马旭, 谢俊锋, 等. 双季稻区杂交稻机插秧低播量精密育秧试验[J]. 农业工程学报, 2014, 30(6): 17-27. doi: 10.3969/j.issn.1002-6819.2014.06.003
      [4]
      李宁, 王雷, 陈炳羽. 基于模糊PID算法的播种机播量自动化控制方法[J]. 河北农机, 2024(3): 1-3. doi: 10.3969/j.issn.1002-1655.hbnj202403003
      [5]
      董文浩, 马旭, 李宏伟, 等. 嵌入式机器视觉的杂交稻低播种量检控装置设计[J]. 吉林大学学报(工学版), 2020, 50(6): 2295-2305.
      [6]
      邢赫, 臧英, 王在满, 等. 水稻气力式播量可调排种器设计与参数优化[J]. 农业工程学报, 2019, 35(4): 20-28. doi: 10.11975/j.issn.1002-6819.2019.04.003
      [7]
      杨昌敏, 赵帮泰, 程方平, 等. 播种监控技术研究现状与展望[J]. 中国农机化学报, 2024, 45(9): 345-352.
      [8]
      李润涛, 王宪良, 姚艳春, 等. 播种机智能检测技术研究[J]. 中国农机化学报, 2022, 43(5): 93-101.
      [9]
      丁幼春, 王凯阳, 刘晓东, 等. 中小粒径种子播种检测技术研究进展[J]. 农业工程学报, 2021, 37(8): 30-41. doi: 10.11975/j.issn.1002-6819.2021.08.004
      [10]
      汤建华, 陈树人, 花银群, 等. 称重传感器在精准农业装备中的应用研究综述[J]. 江苏大学学报(自然科学版), 2018, 39(5): 543-549.
      [11]
      龚智强, 周智文, 赵湛, 等. 一种旋转输送气吸振动式精密播种装置结构设计[J]. 中国农机化学报, 2019, 40(2): 1-5.
      [12]
      龚智强, 张先泽, 赵保岗, 等. 二自由度调节振动吸盘式精量播种装置设计与分析[J]. 中国农机化学报, 2018, 39(8): 1-5.
      [13]
      马旭, 季传栋, 陈林涛, 等. 一种育秧生产线的秧盘播种量动态计量装置和计量方法: CN110440886A[P]. 2019-11-12.
      [14]
      季传栋. 水稻育秧生产线秧盘播种量称重装置研究[D]. 广州: 华南农业大学, 2020.
      [15]
      马旭, 王承恩, 刘赛赛, 等. 水稻育秧生产线秧盘播种量智能调控装置设计与试验[J]. 农业工程学报, 2023, 39(7): 36-46. doi: 10.11975/j.issn.1002-6819.202301058
      [16]
      RIFFEL J R, HUBALEK V A. Agricultural implement having hopper weighing system: US2012316673A1[P]. 2012-12-13.
      [17]
      LIU H T, DING Y Q, YU H F, et al. Signal processing method and performance tests on weighting-sensor-based measuring system of output quantity for a seeding and fertilizing applicator[C]. IFAC-PapersOnLine, 2018, 51(17): 536-540.
      [18]
      顾辰昊, 刘大为, 刘安稳, 等. 育苗播种流水线检测技术及控制系统的研究与展望[J]. 农业工程与装备, 2024, 51(1): 1-6. doi: 10.3969/j.issn.1007-8320.2024.01.001
      [19]
      杜兆辉, 和贤桃, 杨丽, 等. 玉米精准变量播种技术与装备研究进展[J]. 农业工程学报, 2023, 39(9): 1-16. doi: 10.11975/j.issn.1002-6819.202303118
      [20]
      DING Y Q, YANG L, ZHANG D X, et al. Novel low-cost control system for large high-speed corn precision planters[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(2): 151-158. doi: 10.25165/j.ijabe.20211402.6053
      [21]
      丁永前, 陈冲, 余洪锋, 等. 小麦播种机播量控制参数自校正方法[J]. 农业机械学报, 2023, 54(4): 31-37. doi: 10.6041/j.issn.1000-1298.2023.04.003
      [22]
      丁永前, 刘卓, 陈冲, 等. 基于动态称量原理的泛函式播种施肥量检测方法[J]. 农业机械学报, 2021, 52(10): 146-154. doi: 10.6041/j.issn.1000-1298.2021.10.015
      [23]
      AL-MALLAHI A A, KATAOKA T. Application of fibre sensor in grain drill to estimate seed flow under field operational conditions[J]. Computers and Electronics in Agriculture, 2016, 121: 412-419. doi: 10.1016/j.compag.2016.01.006
      [24]
      HE X T, DING Y Q, ZHANG D X, et al. Development of a variable-rate seeding control system for corn planters Part I: Design and laboratory experiment[J]. Computers and Electronics in Agriculture, 2019, 162: 318-327. doi: 10.1016/j.compag.2019.04.012
      [25]
      HE X T, DING Y Q, ZHANG D X, et al. Development of a variable-rate seeding control system for corn planters Part II: Field performance[J]. Computers and Electronics in Agriculture, 2019, 162: 309-317. doi: 10.1016/j.compag.2019.04.010
      [26]
      鹿芳媛, 马旭, 齐龙, 等. 振动式水稻精密播种装置机理分析与试验[J]. 农业机械学报, 2018, 49(6): 119-128. doi: 10.6041/j.issn.1000-1298.2018.06.014
      [27]
      鹿芳媛, 马旭, 齐龙, 等. 基于离散元法的杂交稻振动匀种装置参数优化与试验[J]. 农业工程学报, 2016, 32(10): 17-25. doi: 10.11975/j.issn.1002-6819.2016.10.003

    Catalog

      Corresponding author: TAN Suiyan, tansuiyan@scau.edu.cn

      1. On this Site
      2. On Google Scholar
      3. On PubMed
      Article views PDF downloads Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return