Citation: | CHEN Huilin, WU Yutong, GAO Jie, et al. Resistance to beta cypermethrin and its metabolic pathway in Spodoptera frugiperda population in Sichuan[J]. Journal of South China Agricultural University, 2025, 46(4): 1-11. DOI: 10.7671/j.issn.1001-411X.202501008 |
To investigate the resistance and metabolic pathways of beta cypermethrin in fall armyworm (Spodoptera frugiperda) populations in Sichuan.
The resistance levels of fall armyworm to beta cypermethrin in MY, DC, CX, HD and RH populations in Sichuan were determined by drip method. The activities and gene expressions of three kinds of detoxification metabolic enzymes, such as cytochrome P450 enzymes (P450s), carboxylesterases (CarE) and glutathione S-transferase (GST), were determined by photoelectric colorimetric method and RT-qPCR. The Pearson correlation coefficient was used to analyze the correlation of beta cypermethrin resistance with enzyme activity and gene expressions, and the differences in beta cypermethrin metabolites were analyzed by liquid chromatography-mass spectrometry (LC-MS).
The MY population showed the highest relative resistance ratio (RR) to beta cypermethrin, which was 4.02 times, and the LD50 value was 84.201 μg/g. The activities of CarE, GST and P450s increased with the increase of beta cypermethrin resistance, and the expression levels of CES12, GST epsilon9 and CYP6B50 genes were significantly up-regulated and significantly correlated with beta cypermethrin resistance. The metabolism differential products in the control group (MY) and the experimental group (MY + LD50 beta cypermethrin) were 3-phenoxybenzoic acid (3-PBA), pyro catechol, capric acid, methyl-2, 3-dihydro-3, 5-dihydroxy-2-oxo-3-indoleacetic acid. Among them, 3-PBA was only detected in the experimental group (MY + LD50 beta cypermethrin) and not in the control group (MY). It was inferred that beta cypermethrin was metabolized into 3-PBA through the enzyme activity of fall armyworm, and then pyro catechol was finally generated through oxidation and hydrolysis.
Spodoptera frugiperda may up-regulate the expression of genes associated with detoxification enzymes, leading to increased enzyme activities. This enhanced detoxification capacity accelerates the metabolic degradation of lamb da-cyhalo thrin, thereby reducing the pesticide’s efficacy.
[1] |
王欢欢, 吕圣兰, 赵瑞, 等. 草地贪夜蛾幼虫对常用杀虫剂相对敏感基线的建立[J]. 昆虫学报, 2021, 64(12): 1427-1432.
|
[2] |
姜玉英, 刘杰, 朱晓明. 草地贪夜蛾侵入我国的发生动态和未来趋势分析[J]. 中国植保导刊, 2019, 39(2): 33-35. doi: 10.3969/j.issn.1672-6820.2019.02.006
|
[3] |
崔丽, 芮昌辉, 李永平, 等. 国外草地贪夜蛾化学防治技术的研究与应用[J]. 植物保护, 2019, 45(4): 7-13.
|
[4] |
尹艳琼, 张红梅, 李永川, 等. 8种杀虫剂对云南不同区域草地贪夜蛾种群的室内毒力测定[J]. 植物保护, 2019, 45(6): 70-74.
|
[5] |
赵胜园, 孙小旭, 张浩文, 等. 常用化学杀虫剂对草地贪夜蛾防效的室内测定[J]. 植物保护, 2019, 45(3): 10-14.
|
[6] |
GUTIÉRREZ-MORENO R, MOTA-SANCHEZ D, BLANCO C A, et al. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico[J]. Journal of Economic Entomology, 2019, 112(2): 792-802. doi: 10.1093/jee/toy372
|
[7] |
范志金, 刘丰茂, 钱传范. 氯氰菊酯的名称和组成及其光学异构体[J], 农药科学与管理, 1999, 20(2): 9-11.
|
[8] |
LI Q, JIN M H, YU S M, et al. Knockout of the ABCB1 gene increases susceptibility to emamectin benzoate, beta-cypermethrin and chlorantraniliprole in Spodoptera frugiperda[J]. Insects, 2022, 13(2): 137. doi: 10.3390/insects13020137
|
[9] |
CARVALHO R A, OMOTO C, FIELD L M, et al. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda[J]. PLoS One, 2013, 8(4): e62268. doi: 10.1371/journal.pone.0062268.
|
[10] |
WANG X, MARTÍNEZ M A, DAI M H, et al. Permethrin-induced oxidative stress, toxicity and metabolism: A review[J]. Environmental Research, 2016, 149: 86-104. doi: 10.1016/j.envres.2016.05.003
|
[11] |
HAFEEZ M, LI X W, ULLAH F, et al. Down-regulation of P450 genes enhances susceptibility to indoxacarb and alters physiology and development of fall armyworm, Spodoptera frugipreda (Lepidoptera: Noctuidae)[J]. Frontiers in Physiology, 2022, 13: 884447. doi: 10.3389/fphys.2022.884447.
|
[12] |
李芬, 王力奎, 彭正强, 等. 菊酯类药剂对草地贪夜蛾的毒力及对钠离子通道的诱导特性[J]. 植物保护学报, 2020, 47(4): 884-890.
|
[13] |
AITIO A. A simple and sensitive assay of 7-ethoxycoumarin deethylation[J]. Analytical Biochemistry, 1978, 85(2): 488-491. doi: 10.1016/0003-2697(78)90245-2
|
[14] |
HABIG W H, JAKOBY W B. Assays for differentiation of glutathione S-transferases[J]. Methods in Enzymology, 1981, 77: 398-405.
|
[15] |
WEN Y C, LIU Z W, BAO H B, et al. Imidacloprid resistance and its mechanisms in field populations of brown planthopper, Nilaparvata lugens Stål in China[J]. Pesticide Biochemistry and Physiology, 2009, 94(1): 36-42. doi: 10.1016/j.pestbp.2009.02.009
|
[16] |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
|
[17] |
SHU B S, LIN Y Z, HUANG Y T, et al. Characterization and transcriptomic analyses of the toxicity induced by toosendanin in Spodoptera frugipreda[J]. Gene, 2024, 893: 147928. doi: 10.1016/j.gene.2023.147928.
|
[18] |
ZHOU L, MENG J Y, RUAN H Y, et al. Expression stability of candidate RT-qPCR housekeeping genes in Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. Archives of Insect Biochemistry and Physiology, 2021, 108(1): e21831. doi: 10.1002/arch.21831.
|
[19] |
STEVENSON B J, BIBBY J, PIGNATELLI P, et al. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: Sequential metabolism of deltamethrin revealed[J]. Insect Biochemistry and Molecular Biology, 2011, 41(7): 492-502. doi: 10.1016/j.ibmb.2011.02.003
|
[20] |
杨媛雪, 王爱玉, 张芸, 等. 基于转录组测序解析草地贪夜蛾对溴氰虫酰胺的解毒代谢分子机制[J]. 植物保护学报, 2023, 50(3): 800-811.
|
[21] |
MONTEZANO D G, SPECHT A, SOSA-GÓMEZ D R, et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas[J]. African Entomology, 2018, 26(2): 286-300. doi: 10.4001/003.026.0286
|
[22] |
马千里, 王勇庆, 谭煜婷, 等. 3种拟除虫菊酯类农药对草地贪夜蛾的毒力测定及田间应用效果评价[J]. 环境昆虫学报, 2019, 1(10): 335-341.
|
[23] |
GUO Z M, TANG J H, MA H N, et al. Investigation of lambda-cyhalothrin resistance in Spodoptera frugiperda: Heritability, cross-resistance, and mechanisms[J]. Pesticide Biochemistry and Physiology, 2024, 202: 105916. doi: 10.1016/j.pestbp.2024.105916.
|
[24] |
ZHANG D D, XIAO Y T, XU P J, et al. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China[J]. Journal of Integrative Agriculture, 2021, 20(3): 783-791. doi: 10.1016/S2095-3119(20)63392-5
|
[25] |
陈澄宇, 史雪岩, 高希武. 昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究进展[J]. 农药学学报, 2016, 18(5): 545-555.
|
[26] |
RANSON H, PRAPANTHADARA L A, HEMINGWAY J. Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae[J]. The Biochemical Journal, 1997, 324(Pt1): 97-102.
|
[27] |
VONTAS J G, SMALL G J, HEMINGWAY J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens[J]. The Biochemical Journal, 2001, 357(Pt1): 65-72.
|
[28] |
PRAPANTHADARA L, RANSON H, SOMBOON P, et al. Cloning, resistant C expression and characterization of an insect class I glutathione S-transferase from Anopheles dirus species B[J]. Insect Biochemistry and Molecular Biology, 1998, 28(5/6): 321-329.
|
[29] |
YANG C L, MENG J Y, ZHOU J Y, et al. Integrated transcriptomic and proteomic analyses reveal the molecular mechanism underlying the thermotolerant response of Spodoptera frugiperda[J]. International Journal of Biological Macromolecules, 2024, 264(1): e130578. doi: 10.1016/j.ijbiomac.2024.130578.
|
[1] | XIAN Ji-dong,LIANG Guang-wen,SONG Fa-yan. The life table of experimental population of Chloropuicinaria psidii in litchi[J]. Journal of South China Agricultural University, 2005, 26(3): 34-36. DOI: 10.7671/j.issn.1001-411X.2005.03.009 |
[2] | TANG Cai,TONG Xiao-li,HUANG De-chao,LIU Yu-biao,HE Lian-xin. Effects of Constant Temperatures on the Experimental Population of Oracella acuta[J]. Journal of South China Agricultural University, 2000, (3): 36-39. DOI: 10.7671/j.issn.1001-411X.2000.03.010 |
[3] | ZHANG Mao-xin,LIANG Guang-wen,PANG Xiong-fei. The Construction and Analysis of Natural Population Life Table of Phyllotreta striolata (Fabricius)(Cleoptera: Chrysomelidea)[J]. Journal of South China Agricultural University, 2000, (2): 21-24. DOI: 10.7671/j.issn.1001-411X.2000.02.007 |
[4] | HE Yu-rong,L Li-hua,PANG Xiong-fei. Construction and Analysis of the Natural Population Life Table for Continuous Generation of the Diamondback Moth, Plutella xylostella L.[J]. Journal of South China Agricultural University, 2000, (1): 34-37. DOI: 10.7671/j.issn.1001-411X.2000.01.010 |
[5] | Huang Shoushan, Ding Kejun. ANALYSIS OP THE LIFE TABLE OF THE NATURAL POPULATION OF WHITEBACKED PLANTHOPPER(WBPH) Sogatella furoifera(Horvath)[J]. Journal of South China Agricultural University, 1994, (4): 47-51. |
[7] | Tian Mingyi , Liang Guangwen ,Pang Xiongfei. IMPROVEMENT ON THE LIFE TABLE OF NATURALPOPULATION OF CITRUS RED MITE AND ITS ANALYSIS[J]. Journal of South China Agricultural University, 1994, (3): 39-44. |
[8] | Wang Weizhuang Chen Weiping. LIFE TABLES OF DIAMONDBACK MOTH (DBM),PLUTELLA XYLOSTELLA (L.) AND EVALUATION OF INSECTICIDES[J]. Journal of South China Agricultural University, 1992, (4): 77-80. |
[9] | Zhang Jian Pang Xiongfei. STUDY ON THE LIFE TABLE AND ITS ANALYSIS OF PADDY STEM BORER ON THE EARLY RICE[J]. Journal of South China Agricultural University, 1992, (3): 42-47. |
[10] | Pang Xiongfei Hou Renhuan Bao Huali. METHOD TO CONSTRUCT THE NATURAL LIFE TABLE OF Nilaparvata lugens STAL[J]. Journal of South China Agricultural University, 1992, (1): 1-5. |