• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
HUANG Huozhi, LIU Yang, CHEN Kang, et al. Effect of complex microbial inoculation on growth, and nitrogen and phosphorus uptake of maize and soybean in intercropping system[J]. Journal of South China Agricultural University, 2025, 46(5): 1-12. DOI: 10.7671/j.issn.1001-411X.202412008
Citation: HUANG Huozhi, LIU Yang, CHEN Kang, et al. Effect of complex microbial inoculation on growth, and nitrogen and phosphorus uptake of maize and soybean in intercropping system[J]. Journal of South China Agricultural University, 2025, 46(5): 1-12. DOI: 10.7671/j.issn.1001-411X.202412008

Effect of complex microbial inoculation on growth, and nitrogen and phosphorus uptake of maize and soybean in intercropping system

More Information
  • Objective 

    To investigate the effects of inoculation with synthetic microbial communities on growth, and nitrogen (N) and phosphorus (P) uptake of monocultured or intercropped maize and soybean, and provide a theoretical basis for utilizing efficiently microbial inoculants to enhance crop yield.

    Method 

    Using unsterilized soil in monoculture and intercropping systems of maize and soybean, a pot experiment, including eight treatments of non-inoculated control (CK), single inoculation with arbuscular mycorrhizal (AM) fungi (A), rhizobia (R) or Bacillus (B), dual inoculation with AM fungi and rhizobia (A+R), AM fungi and Bacillus (A+B), or rhizobia and Bacillus (R+B), and triple inoculation with AM fungi, rhizobia and Bacillus (A+R+B), was conducted to determine plant dry weight, N and P contents, root traits, mycorrhizal colonization rate, nodule traits, pH and acid phosphatase activity in the rhizosphere.

    Result 

    The different combinations of dual inoculation exhibited better inoculation effects. Compared with CK, dual inoculations of A+B and R+B increased plant dry weight by 14.11% and 13.31%, N content by 30.02% and 20.56%, and P content by 17.77% and 16.84% in the monocultured maize, respectively. Dual inoculation of R+B increased plant dry weight, N and P contents by 28.53%, 33.55% and 17.29% in the monocultured soybean, respectively. Compared with dual inoculation of A+B, plant dry weight of the monocultured or intercropped maize with triple inoculation of A+R+B significantly reduced. Compared with dual inoculation of R+B, plant dry weight and N and P contents of the monocultured soybean with triple inoculation of A+R+B also significantly reduced. Intercropping significantly increased plant dry weight and N and P contents of maize (except for the A+R+B treatment); Dual inoculation of R+B promoted N and P uptake and plant growth of the intercropped soybean, and partially alleviated the inhibitory effect of intercropping on soybean growth. Compared with CK, Dual inoculation of R+B promoted mycorrhizal colonization rate of the intercropped maize and nodulation of monocultured or intercropped soybean plant. Additionally, dual inoculation of A+B and R+B, as well as intercropping promoted maize root growth, and altered rhizosphere processes of both maize and soybean, thereby enhanced crop acquisition of N and P.

    Conclusion 

    In the complex environment of soil, single inoculation has limited effectiveness, while dual inoculations with complex microbial communities and intercropping play a significant role in improving N and P acquisition and promoting maize growth.

  • [1]
    HEGAZI A M, EL-SHRAIY A M, GHONAME A A. Mitigation of salt stress negative effects on sweet pepper using arbuscular mycorrhizal fungi (AMF), Bacillus megaterium and brassinosteroids (BRs)[J]. Gesunde Pflanzen, 2017, 69(2): 91-102. doi: 10.1007/s10343-017-0393-9
    [2]
    BERG G, RYBAKOVA D, GRUBE M, et al. The plant microbiome explored: Implications for experimental botany[J]. Journal of Experimental Botany, 2016, 67(4): 995-1002. doi: 10.1093/jxb/erv466
    [3]
    杨国玲, 邓璐璐, 陈康, 等. 低磷条件下接种丛枝菌根真菌对大豆生长和磷吸收的影响[J]. 华南农业大学学报, 2021, 42(4): 42-50.
    [4]
    UDVARDI M, POOLE P S. Transport and metabolism in legume-rhizobia symbioses[J]. Annual Review of Plant Biology, 2013, 64: 781-805. doi: 10.1146/annurev-arplant-050312-120235
    [5]
    KASCHUK G, AULER A C, VIEIRA C E, et al. Coinoculation impact on plant growth promotion: A review and meta-analysis on coinoculation of rhizobia and plant growth-promoting bacilli in grain legumes[J]. Brazilian Journal of Microbiology, 2022, 53(4): 2027-2037. doi: 10.1007/s42770-022-00800-7
    [6]
    刘忆, 袁玲. 根瘤菌和AM真菌对紫花苜蓿结瘤和产质量的影响[J]. 土壤学报, 2020, 57(5): 1292-1298.
    [7]
    KIDDEE S, WONGDEE J, PIROMYOU P, et al. Unveiling the tripartite synergistic interaction of plant-arbuscular mycorrhizal fungus symbiosis by endophytic Bacillus velezensis S141 in Lotus japonicus[J]. Symbiosis, 2024, 92(3): 355-367. doi: 10.1007/s13199-024-00975-7
    [8]
    刘丽, 马鸣超, 姜昕, 等. 根瘤菌与促生菌双接种对大豆生长和土壤酶活的影响[J]. 植物营养与肥料学报, 2015, 21(3): 644-654.
    [9]
    XING P F, ZHAO Y B, GUAN D W, et al. Effects of Bradyrhizobium co-inoculated with Bacillus and Paenibacillus on the structure and functional genes of soybean rhizobacteria community[J]. Genes, 2022, 13(11): 1922. doi: 10.3390/genes13111922
    [10]
    ZHANG W P, LI Z X, GAO S N, et al. Resistance vs. surrender: Different responses of functional traits of soybean and peanut to intercropping with maize[J]. Field Crops Research, 2023, 291: 108779.
    [11]
    ZHENG B C, ZHOU Y, CHEN P, et al. Maize–legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability[J]. Journal of Integrative Agriculture, 2022, 21(6): 1755-1771.
    [12]
    BEGAM A, PRAMANICK M, DUTTA S, et al. Inter-cropping patterns and nutrient management effects on maize growth, yield and quality[J]. Field Crops Research, 2024, 310: 109363. doi: 10.1016/j.fcr.2024.109363
    [13]
    KOSKEY G, AVIO L, TURRINI A, et al. Durum wheat-lentil relay intercropping enhances soil mycorrhizal activity but does not alter structure of arbuscular mycorrhizal fungal community within roots[J]. Agriculture, Ecosystems & Environment, 2023, 357: 108696.
    [14]
    QIN Y H, YAN Y X, CHENG L, et al. Arbuscular mycorrhizal fungi and Rhizobium facilitate nitrogen and phosphate availability in soybean/maize intercropping systems[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2723-2731. doi: 10.1007/s42729-023-01229-z
    [15]
    LI X F, WANG P, TIAN X L, et al. Complementarity for nitrogen use in maize/faba bean intercropping with inoculation[J]. Plant and Soil, 2025, 506(1): 343-357.
    [16]
    MAO J, WANG P, XIAO C L, et al. Rhizobium inoculation improves yield advantages and soil Olsen phosphorus by enhancing interspecific facilitation in intercropping[J]. Plant and Soil, 2025, 506(1): 359-373.
    [17]
    程凤娴, 涂攀峰, 严小龙, 等. 酸性红壤中磷高效大豆新种质的磷营养特性[J]. 植物营养与肥料学报, 2010, 16(1): 71-81.
    [18]
    QIN L, ZHAO J, TIAN J, et al. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean[J]. Plant Physiology, 2012, 159(4): 1634-1643. doi: 10.1104/pp.112.199786
    [19]
    程凤娴, 曹桂芹, 王秀荣, 等. 华南酸性低磷土壤中大豆根瘤菌高效株系的发现及应用[J]. 科学通报, 2008, 53(23): 2903-2910.
    [20]
    罗莎莉. 复合微生物菌群的构建及其对花生促生效果的研究[D]. 广州: 华南农业大学, 2023.
    [21]
    郑林生, 刘志强, 陈康, 等. 基因型影响磷镁互作下大豆生长及根瘤和菌根性状[J]. 植物营养与肥料学报, 2022, 28(9): 1685-1698.
    [22]
    李宝齐, 邓英杰, 杨静文. 苯酚−次氯酸盐法测定空白脂质体透析液中铵离子浓度[J]. 中国药剂学杂志(网络版), 2006, 4(4): 184-188.
    [23]
    崔广娟, 曹华元, 陈康, 等. 镉胁迫对4种基因型大豆生长和体内元素分布的影响[J]. 华南农业大学学报, 2020, 41(5): 49-57.
    [24]
    逯路文, 杨飞, 王倩倩, 等. 不同类型土壤上玉米生长对低磷和施磷肥的响应[J]. 华南农业大学学报, 2024, 45(4): 516-524.
    [25]
    LI H G, SHEN J B, ZHANG F S, et al. Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil[J]. Biology and Fertility of Soils, 2010, 46(2): 79-91. doi: 10.1007/s00374-009-0411-x
    [26]
    YU L, ZHANG H, ZHANG W T, et al. Arbuscular mycorrhizal fungi alter the interaction effects between Bacillus and Rhizobium on root morphological traits of Medicago ruthenica L.[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2868-2877. doi: 10.1007/s42729-023-01242-2
    [27]
    汪芳芳, 孙秀娟, 徐伟慧, 等. 大豆根瘤内生菌合成菌群对根系微生物群落的影响[J]. 中国油料作物学报, 2025, 47(1): 192-203.
    [28]
    WANG C H, LI Y J, LI M J, et al. Functional assembly of root-associated microbial consortia improves nutrient efficiency and yield in soybean[J]. Journal of Integrative Plant Biology, 2021, 63(6): 1021-1035. doi: 10.1111/jipb.13073
    [29]
    马鸣超, 刘丽, 姜昕, 等. 胶质类芽孢杆菌与慢生大豆根瘤菌复合接种效果评价[J]. 中国农业科学, 2015, 48(18): 3600-3611.
    [30]
    PATACZEK L, ARMAS J C B, PETSCH T, et al. Single-strain inoculation of Bacillus subtilis and Rhizobium phaseoli affects nitrogen acquisition of an improved mungbean cultivar[J]. Journal of Soil Science and Plant Nutrition, 2024, 24(4): 6746-6759. doi: 10.1007/s42729-024-02001-7
    [31]
    LARIMER A L, BEVER J D, CLAY K. The interactive effects of plant microbial symbionts: A review and meta-analysis[J]. Symbiosis, 2010, 51(2): 139-148. doi: 10.1007/s13199-010-0083-1
    [32]
    MA H M, YU X Q, YU Q, et al. Maize/alfalfa intercropping enhances yield and phosphorus acquisition[J]. Field Crops Research, 2023, 303: 109136. doi: 10.1016/j.fcr.2023.109136
    [33]
    ZHANG L Q, FENG Y D, ZHAO Z H, et al. Maize/soybean intercropping with nitrogen supply levels increases maize yield and nitrogen uptake by influencing the rhizosphere bacterial diversity of soil[J]. Frontiers in Plant Science, 2024, 15: 1437631. doi: 10.3389/fpls.2024.1437631
    [34]
    覃潇敏, 潘浩男, 肖靖秀, 等. 施磷水平对玉米大豆间作系统氮素吸收与分配的影响[J]. 植物营养与肥料学报, 2021, 27(7): 1173-1184.
    [35]
    李雪, 张霞, 陈国鹏, 等. 西南地区玉米−大豆带状套作成本及综合效益分析[J]. 中国油料作物学报, 2023, 45(2): 427-436.
    [36]
    HOMULLE Z, GEORGE T S, KARLEY A J. Root traits with team benefits: Understanding belowground interactions in intercropping systems[J]. Plant and Soil, 2022, 471(1): 1-26.
    [37]
    BEN-LAOUANE R, AIT-EL-MOKHTAR M, ANLI M, et al. Green compost combined with mycorrhizae and rhizobia: A strategy for improving alfalfa growth and yield under field conditions[J]. Gesunde Pflanzen, 2021, 73(2): 193-207. doi: 10.1007/s10343-020-00537-z
    [38]
    张淑彬, 王幼珊, 殷晓芳, 等. 不同施磷水平下AM真菌发育及其对玉米氮磷吸收的影响[J]. 植物营养与肥料学报, 2017, 23(3): 649-657.
    [39]
    YONAS M W, ZAWAR S. Optimizing chickpea growth: Unveiling the interplay of arbuscular mycorrhizal fungi and Rhizobium for sustainable agriculture[J]. Soil Use and Management, 2024, 40(2): e13057. doi: 10.1111/sum.13057
    [40]
    段海霞, 师茜, 康生萍, 等. 丛枝菌根真菌和根瘤菌与植物共生研究进展[J]. 草业学报, 2024, 33(5): 166-182. doi: 10.11686/cyxb2023225
    [41]
    HU F L, ZHAO C, FENG F X, et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea[J]. Plant and Soil, 2017, 412(1): 235-251.
    [42]
    QIN X M, PAN H N, XIAO J X, et al. Increased nodular P level induced by intercropping stimulated nodulation in soybean under phosphorus deficiency[J]. Scientific Reports, 2022, 12(1): 1991. doi: 10.1038/s41598-022-05668-z
    [43]
    HINSINGER P, PLASSARD C, TANG C X, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review[J]. Plant and Soil, 2003, 248(1): 43-59.
    [44]
    崔宸阳, 李静, 杨子, 等. 土壤闭蓄态磷的形成、转化与利用途径[J]. 植物营养与肥料学报, 2024, 30(7): 1413-1421.
    [45]
    何群辉, 孙亚丽, 管仁水, 等. 不同蓼草根际土壤酸性磷酸酶活性及其影响因素[J]. 湖南师范大学自然科学学报, 2023, 46(5): 116-123.
    [46]
    KONG Y B, LI X H, MA J, et al. GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana[J]. Plant Cell Reports, 2014, 33(4): 655-667. doi: 10.1007/s00299-014-1588-5
    [47]
    BETENCOURT E, DUPUTEL M, COLOMB B, et al. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil[J]. Soil Biology and Biochemistry, 2012, 46: 181-190. doi: 10.1016/j.soilbio.2011.11.015
    [48]
    HINSINGER P, BETENCOURT E, BERNARD L, et al. P for two, sharing a scarce resource: Soil phosphorus acquisition in the rhizosphere of intercropped species[J]. Plant Physiology, 2011, 156(3): 1078-1086. doi: 10.1104/pp.111.175331
  • Cited by

    Periodical cited type(61)

    1. 林秋鹏,朱秀丽,马琳莎,姚鹏程. 引导编辑系统研究进展. 华南农业大学学报. 2024(02): 159-171 . 本站查看
    2. 周千,沈月,王学涛,田永强. 基因编辑在植物育种领域中的应用进展研究. 智慧农业导刊. 2024(05): 65-69 .
    3. 吴敏,黄娟,石桃雄,朱丽伟,邓娇,梁成刚,汪燕,刘飞,李荣,蔡芳,陈庆富. 应用CRISPR/Cas9基因编辑技术获得高直链淀粉水稻种质. 福建农业学报. 2024(01): 17-24 .
    4. 胡丹玲,孙永伟. 病毒介导的植物基因组编辑技术研究进展. 植物学报. 2024(03): 452-462 .
    5. 隆静,陈婧敏,刘霄,张一凡,周利斌,杜艳. 植物DNA双链断裂修复机制及其在重离子诱变和基因编辑中的作用. 生物技术通报. 2024(07): 55-67 .
    6. 洪霞,陈孝赏,卢基来,屈为栋. 芋的基因组研究及其遗传多样性. 分子植物育种. 2024(19): 6330-6339 .
    7. 陆地,胡春华,盛鸥,杨乔松,窦同心,何维弟,邓贵明,高慧君,刘思文,李春雨,董涛,易干军,毕方铖. 植物CRISPR/Cas无外源DNA基因组编辑技术研究进展. 园艺学报. 2024(08): 1927-1948 .
    8. 张文宣,梁晓梅,戴成,文静,易斌,涂金星,沈金雄,傅廷栋,马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性. 作物学报. 2023(02): 321-331 .
    9. 李欣,刘旭霞,张文斐. 全球农业基因编辑技术监管动态及发展趋势. 生命科学. 2023(02): 114-122 .
    10. 覃玉芬,廖山岳,郭新颖,周海,房耀宇,滕开冲,刘芳,覃宝祥,庄楚雄,李容柏. 利用CRISPR/Cas9基因编辑系统创制新型水稻温敏雄性核不育系. 分子植物育种. 2023(05): 1551-1561 .
    11. 宋思,徐杰,赵霞,周晶. 基因编辑技术在抗白粉病小麦育种中的研究进展. 粮食与油脂. 2023(03): 13-16 .
    12. 闫强,胡亚群,薛冬,周琰琰,丁佩,韦雅雯,袁星星,陈新. 基于绿豆发状根的快速CRISPR/Cas9基因编辑方法. 江苏农业科学. 2023(10): 48-52 .
    13. 高上,满淼淼,赵华,张丽娜,王加峰. 利用CRISPR/Cas9基因编辑技术创建水稻OsPUX2突变体. 安徽农业科学. 2023(09): 73-76 .
    14. 谷玉娟,梁大安,郝天琪,高倩,刘磊. 缺失OSR结构域功能的GS3蛋白正向调控水稻籽粒大小. 植物遗传资源学报. 2023(04): 1133-1140 .
    15. 马庆,付强,杨银,陈兰娅,陈海,代方霞,邹颉. 铁皮石斛分子生物学研究进展. 山地农业生物学报. 2023(04): 45-50 .
    16. 彭歆,钱乾,谭健韬,彭波,甘玉立,王成睿,刘琦,沈梦圆. 水稻遗传育种相关生物信息数据库和工具的研究进展. 华南农业大学学报. 2023(06): 854-866 . 本站查看
    17. 王兵,赵会纳,余婧,陈杰,骆梅,雷波. 利用CRISPR/Cas9系统研究REVOLUTA参与烟草叶芽发育的调控. 生物技术通报. 2023(10): 197-208 .
    18. 娄红梅,杨庆玲,向小雪. 番茄MYB44基因敲除载体构建研究. 特种经济动植物. 2022(01): 19-22 .
    19. 石育钦,孙梦丹,陈帆,成洪涛,胡学志,付丽,胡琼,梅德圣,李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性. 作物学报. 2022(04): 801-811 .
    20. 黄成,徐莹,张昊,刘雄伦,罗红兵. “金课”背景下“遗传学”课程建设的探索与思考. 教育教学论坛. 2022(03): 101-104 .
    21. 蒋萌,付尚谭,王晓峰. CRISPR/Cas9基因组编辑技术在番茄中的应用现状及展望. 西北植物学报. 2022(02): 348-360 .
    22. 邓心安,王舒,曾海燕. 基因编辑食品监管与标识管理研究——基于认知度视角分析. 世界科技研究与发展. 2022(02): 210-221 .
    23. 张慧博,孙超. CRISPR/Cas9技术在药用植物功能基因组研究中的应用和展望. 世界科学技术-中医药现代化. 2022(02): 638-648 .
    24. 杨永昌,常帅,赵欣宇. CRISPR-Cas介导基因编辑技术的发展趋势及研究进展. 现代医学与健康研究电子杂志. 2022(06): 131-136 .
    25. 李莹,段俊枝,邓俊锋. 典型农业科技期刊高被引论文分析——以入选综合性农业科学类中文核心期刊的16种高校学报为例. 科技传播. 2022(14): 29-36 .
    26. 偶春,张敏,丁霖,姚侠妹,王泽璐,彭城,徐俊锋. CRISPR/Cas9基因编辑技术在植物中的应用与政策监管. 浙江农业学报. 2022(08): 1806-1814 .
    27. 张金霞,刘骏,王士苗,董彦琪,张栩,彭东. CRISPR/Cas基因编辑技术及其在花生育种中的应用前景. 分子植物育种. 2022(15): 5011-5020 .
    28. 魏雪珂,张大鹏,石鹏,李志瑛,王永. 基于CRISPR/Cas系统的热带作物基因编辑研究进展. 中国热带农业. 2022(05): 9-14 .
    29. 张艳雯,杨晓祎,王慧慧,侯典云,张红晓,张卓妍,胥华伟. 应用CRISPR/Cas9技术研究水稻OsPIN10a基因功能. 植物生理学报. 2022(09): 1715-1723 .
    30. 李凯强,王晶,肖伟,任红艳,华再东,董发明,毕延震. 缺失VIM基因大白猪肾成纤维细胞的构建及其NF-κB和MAPK信号通路的研究. 中国预防兽医学报. 2022(09): 970-976 .
    31. 康志强,邓小大,袁永强,蔡书静,郑礼军,赵利锋,叶雯华,王燕,王新荣. 基于CRISPR/Cas9系统的番茄LeMYB330突变体制作及突变位点分析. 分子植物育种. 2022(23): 7785-7795 .
    32. 陈娜,邵勤,李晓鹏,高阳,卢其能. 马铃薯野生种SpSBP1基因的克隆及CRISPR/Cas9载体构建. 华北农学报. 2022(06): 23-33 .
    33. 侯应霞,韦文俊,陈浩,顾艳,龚丝雨. CRISPR/Cas9技术在农作物育种中的应用. 湖北农业科学. 2022(S1): 4-10 .
    34. 程伟,刘昆霖,何水林,廖玉才. 基于高校学生认知度的转基因科普及产业化的思考和建议. 农业生物技术学报. 2021(01): 137-145 .
    35. 刘肖静,王旭静,王志兴. CRISPR-Cas系统在植物中的研究进展与监管政策. 生物技术进展. 2021(01): 1-8 .
    36. 杨雪,孙雅佩,王政博,于茹恩,李雪萍,李红英. CRISPR/Cas9介导靶向敲除拟南芥REVOLUTA基因突变体的鉴定. 分子植物育种. 2021(03): 867-873 .
    37. 张洪文,赵圣博,闫晓红,李俊,翟杉杉,肖芳,高鸿飞,李允静,吴刚,武玉花. 一种基因编辑位点特异性PCR方法的开发和应用. 中国油料作物学报. 2021(01): 77-89 .
    38. 张旺,冼俊霖,孙超,王春明,石丽,于为常. CRISPR/Cas9编辑花生FAD2基因研究. 作物学报. 2021(08): 1481-1490 .
    39. 潘志文,张旭冬,高洁儿,刘鹏程,姚涓,张秀杰,姜大刚. 基因组编辑植物的监管与检测技术. 科技导报. 2021(09): 87-92 .
    40. 王潇然,孟凡荣,李会强,金维环,李涛,崔晓娜,石永春,王小纯. 基于“互联网+”的生物化学课程建设与探索. 河南教育学院学报(自然科学版). 2021(02): 54-57 .
    41. 王梦雨,王颢潜,王旭静,王志兴. 基因编辑产品检测技术研究进展. 生物技术进展. 2021(04): 438-445 .
    42. 李凯强,李琦,姚杰,任红艳,董发明,毕延震. CRISPR-Cas技术用于核酸检测的现状和前景. 中国预防兽医学报. 2021(07): 791-795 .
    43. 罗丽婷,蒋君梅,李向阳,谢鑫. CRISPR技术在改良植物抗病性中的应用. 山地农业生物学报. 2021(04): 46-57 .
    44. 王洁,吴怀通. CRISPR/Cas9系统介导的基因编辑文库筛选在植物中的应用. 分子植物育种. 2021(18): 6051-6058 .
    45. 吴世洋,杨晓祎,张艳雯,侯典云,胥华伟. 利用CRISPR/Cas9基因编辑技术构建水稻ospin9突变体. 中国农业科学. 2021(18): 3805-3817 .
    46. 谭晓菁,王忠华,吴月燕,郑二松,徐如梦,陈剑平,王栩鸣,严成其. 基因编辑技术在水稻抗病基因与育种研究中的应用进展. 浙江农业学报. 2021(10): 1982-1990 .
    47. 张伟梅,张古文,冯志娟,刘娜,王斌,卜远鹏. 菜用大豆籽粒中蔗糖的遗传与调控机制研究进展. 浙江农业学报. 2021(12): 2446-2456 .
    48. 黄锦,李勇,于翠,朱志贤,莫荣利,董朝霞,胡兴明,邓文. 基因编辑技术及其在桑树育种中的应用前景展望. 湖北农业科学. 2021(23): 8-14 .
    49. 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究. 中国生物工程杂志. 2021(12): 24-29 .
    50. 王超凡,张大健. 基因编辑技术在大豆种质资源研究中的利用. 植物遗传资源学报. 2020(01): 26-32 .
    51. 陈玉冲,温国泉,蒋显斌. 华南稻区近20年水稻品种审定与保护现状分析. 中国种业. 2020(04): 46-52 .
    52. 薛永国,刘鑫磊,唐晓飞,曹旦,栾晓燕. CRISPR-Cas9技术在作物中研究进展. 黑龙江农业科学. 2020(02): 125-130 .
    53. 李志亮,黄丛林,刘晓彬,邢浩春,吴忠义. 转基因植物及其安全性的研究进展. 北方园艺. 2020(08): 129-135 .
    54. 王一博,赫兆辉. 基因编辑技术在植物育种工作中的应用. 种子科技. 2020(11): 108+110 .
    55. 陈赢男,陆静. CRISPR/Cas9系统在林木基因编辑中的应用. 遗传. 2020(07): 657-668 .
    56. 朱奕骋. CRISPR/Cas9技术的研究进展及其在肺癌研究中的应用. 科技传播. 2020(14): 172-174 .
    57. 王慧媛,刘晓,薛淮,赵剑峰,熊燕. 完善安全管理, 促进基因编辑作物的科技与产业发展. 植物生理学报. 2020(11): 2317-2328 .
    58. 潘志文,高洁儿,陈伟庭,周峰,姚涓,姜大刚. 基因组编辑技术在植物中的应用研究进展. 贵州农业科学. 2020(12): 16-20 .
    59. He Rui,Cao Qin,Chen Jiejun,Tian Jinqiang. Perspectivesonthemanagementofsyntheticbiologicalandgeneeditedfoods. 生物安全与健康(英文). 2020(04): 193-198 .
    60. 律文堂,尹静静,阴筱,徐国鑫,吴小宾,李效尊,吴修. PARMS在水稻基因编辑后代基因分型中的应用研究. 山东农业科学. 2019(10): 8-13 .
    61. Gousi Li,Yao-Guang Liu,Yuanling Chen. Genome-editing technologies: the gap between application and policy. Science China(Life Sciences). 2019(11): 1534-1538 .

    Other cited types(89)

Catalog

    Article views (29) PDF downloads (2) Cited by(150)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return