• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHU Youjiao, CHEN Jianxin, WU Fengjinglin, et al. Study on the disease suppression mechanism of Bacillus halotolerans against Colletotrichum siamense[J]. Journal of South China Agricultural University, 2025, 46(4): 1-10. DOI: 10.7671/j.issn.1001-411X.202411023
Citation: ZHU Youjiao, CHEN Jianxin, WU Fengjinglin, et al. Study on the disease suppression mechanism of Bacillus halotolerans against Colletotrichum siamense[J]. Journal of South China Agricultural University, 2025, 46(4): 1-10. DOI: 10.7671/j.issn.1001-411X.202411023

Study on the disease suppression mechanism of Bacillus halotolerans against Colletotrichum siamense

More Information
  • Objective 

    To analyze the disease prevention mechanisms of endophytic bacteria against Colletotrichum siamense causing camellia anthracnose.

    Method 

    The inhibitory effect of the endophytic bacterial strain B11 on C. siamense was evaluated using the dual-culture method. The disease-suppressing and induced resistance mechanisms of the endophytic bacteria were investigated through scanning electron microscopy, amplification of compound synthesis genes and RT-qPCR.

    Result 

    Based on morphological characteristics and multi-gene phylogenetic analysis, the endophytic bacterial strain B11 was identified as Bacillus halotolerans. This strain exhibited broad-spectrum in vitro antimicrobial activity, with significant inhibitory effects on C. siamense. Its fermentation broth caused disruption of the cell wall of C. siamense strain CA17, leakage of intracellular contents and abnormal swelling of hyphae. Additionally, after treatment with the fermentation broth of strain B11, the marker genes PR1 and PR5 in the salicylic acid (SA) signaling pathway were upregulated in Arabidopsis leaves. Following treatment of Camellia leaves with the fermentation broth, the activities of defense-related enzymes POD and SOD were significantly increased.

    Conclusion 

    This study provides important theoretical support for the research and development of green prevention and control technologies for C. siamense and the development and application of biological control agents.

  • [1]
    中国科学院中国植物志编辑委员会. 中国植物志: 第六十九卷[M]. 北京: 科学出版社, 1990.
    [2]
    徐德兵, 陈福, 张林涛, 等. 云南高原山地油茶籽油脂肪酸组成及品质分析[J]. 西部林业科学, 2021, 50(1): 112-117.
    [3]
    尹必期, 张仁斌, 余祖华, 等. 腾冲红花油茶4种活性物质含量及变异分析[J]. 林业调查规划, 2025, 50(1): 109-114. doi: 10.3969/j.issn.1671-3168.2025.01.017
    [4]
    ZHANG F, ZHU F, CHEN B L, et al. Composition, bioactive substances, extraction technologies and the influences on characteristics of Camellia oleifera oil: A review[J]. Food Research International, 2022, 156: 111159. doi: 10.1016/j.foodres.2022.111159.
    [5]
    ZHAO Y, SU R Q, ZHANG W T, et al. Antibacterial activity of tea saponin from Camellia oleifera shell by novel extraction method[J]. Industrial Crops and Products, 2020, 153.153: 112604. doi: 10.1016/j.indcrop.2020.112604.
    [6]
    王羚, 方学智, 杜孟浩, 等. 超临界CO2萃取对油茶饼中油脂品质及茶皂素理化特性影响的研究[J]. 中国油脂, 2020, 45(8): 109-114. doi: 10.12166/j.zgyz.1003-7969/2020.08.022
    [7]
    贺伟, 叶建仁. 森林病理学[M]. 2版. 北京: 中国林业出版社, 2017.
    [8]
    徐丽萍, 檀根甲. 油茶主要病害流行与生态条件的关系和生态调控技术[J]. 安徽农业大学学报, 2015, 42(2): 272-275.
    [9]
    薛勇, 杨正容, 黄晓斌, 等. 正确处理“3R” 问题 确保农产品质量安全[J]. 湖北植保, 2017(6): 60-62. doi: 10.3969/j.issn.1005-6114.2017.06.028
    [10]
    LIU C J, LI B, DONG Y B, et al. Endophyte colonization enhanced cadmium phytoremediation by improving endosphere and rhizosphere microecology characteristics[J]. Journal of Hazardous Materials, 2022, 434: 128829. doi: 10.1016/j.jhazmat.2022.128829.
    [11]
    OPDENSTEINEN P, DIETZ S J, GENGENBACH B B, et al. Expression of biofilm-degrading enzymes in plants and automated high-throughput activity screening using experimental Bacillus subtilis biofilms[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 708150. doi: 10.3389/fbioe.2021.708150.
    [12]
    GORAI P S, GHOSH R, MANDAL S, et al. Bacillus siamensis CNE6- a multifaceted plant growth promoting endophyte of Cicer arietinum L. having broad spectrum antifungal activities and host colonizing potential[J]. Microbiological Research, 2021, 252: 126859. doi: 10.1016/j.micres.2021.126859.
    [13]
    LI C Y, HU W C, PAN B, et al. Rhizobacterium Bacillus amyloliquefaciens strain SQRT3-mediated induced systemic resistance controls bacterial wilt of tomato[J]. Pedosphere, 2017, 27(6): 1135-1146. doi: 10.1016/S1002-0160(17)60406-5
    [14]
    LI P Q, FENG B Z, YAO Z, et al. Antifungal activity of endophytic Bacillus K1 against Botrytis cinerea[J]. Frontiers in Microbiology, 2022, 13: 935675. doi: 10.3389/fmicb.2022.935675.
    [15]
    WANG Y H, SUN Z Q, ZHAO Q Q, et al. Whole-genome analysis revealed the growth-promoting and biological control mechanism of the endophytic bacterial strain Bacillus halotolerans Q2H2, with strong antagonistic activity in potato plants[J]. Frontiers in Microbiology, 2024, 14: 1287921. doi: 10.3389/fmicb.2023.1287921.
    [16]
    HERNANDEZ J P, DE-BASHAN L E, RODRIGUEZ D J. et al. Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils[J]. European Journal of Soil Biology, 2009, 45(1): 88-93. doi: 10.1016/j.ejsobi.2008.08.004
    [17]
    黄元桐, 崔杰. 革兰氏染色三步法与质量控制[J]. 微生物学报, 1996, 36(1): 76-79.
    [18]
    GAO Z F, ZHANG B J, LIU H P, et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biological Control, 2017, 105: 27-39. doi: 10.1016/j.biocontrol.2016.11.007
    [19]
    CAAMAñO-ANTELO S, FERNÁNDEZ-NO I C, BöHME K, et al. Genetic discrimination of foodborne pathogenic and spoilage Bacillus spp. based on three housekeeping genes[J]. Food Microbiology, 2015, 46: 288-298. doi: 10.1016/j.fm.2014.08.013
    [20]
    YU C, JIN J, MENG L Q, et al. Sequence comparison of phoR, gyrB, groEL, and cheA genes as phylogenetic markers for distinguishing Bacillus amyloliquefaciens and B. subtilis and for identifying Bacillus strain B29[J]. Cellular and Molecular Biology, 2017, 63(5): 19-24. doi: 10.14715/cmb/2017.63.5.4
    [21]
    POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter, 1997, 15(1): 8-15. doi: 10.1007/BF02772108
    [22]
    KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054
    [23]
    SAITOU N, NEI M. The neighbor-joining method: A new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425.
    [24]
    HUANG H Y, WU Z Q, TIAN C M, et al. Identification and characterization of the endophytic bacterium Bacillus atrophaeus XW2, antagonistic towards Colletotrichum gloeosporioides[J]. Annals of Microbiology, 2015, 65(3): 1361-1371. doi: 10.1007/s13213-014-0974-0
    [25]
    WANG W Y, KONG W L, LIAO Y C Z, et al. Identification of Bacillus velezensis SBB and its antifungal effects against Verticillium dahliae[J]. Journal of Fungi, 2022, 8(10): 1021. doi: 10.3390/jof8101021.
    [26]
    黄华毅. 杨树炭疽病菌内生拮抗细菌抑菌活性研究[D]. 北京: 北京林业大学, 2017.
    [27]
    ZHU Y, GUO M J, SONG J B, et al. Roles of endogenous melatonin in resistance to Botrytis cinerea infection in an Arabidopsis model[J]. Frontiers in Plant Science, 2021, 12: 683228. doi: 10.3389/fpls.2021.683228.
    [28]
    WALLSTRÖM S V, AIDEMARK M, ESCOBAR M A, et al. An alternatively spliced domain of the NDC1 NAD(P)H dehydrogenase gene strongly influences the expression of the ACTIN2 reference gene in Arabidopsis thaliana[J]. Plant Science, 2012, 183: 190-196. doi: 10.1016/j.plantsci.2011.08.011
    [29]
    SIMON P. Q-gene: Processing quantitative real-time RT-PCR data[J]. Bioinformatics, 2003, 19(11): 1439-1440. doi: 10.1093/bioinformatics/btg157
    [30]
    周嫒婷, 王芳, 彭睿琦, 等. 内生菌YYC155诱导油茶抗病性及转录组分析[J]. 中国油料作物学报, 2024, 46(1): 191-200.
    [31]
    SCHEKALEVA O, LUNEVA O, KLIMENKO E, et al. Dynamics of ROS production, SOD, POD and CAT activity during stigma maturation and pollination in Nicotiana tabacum and Lilium longiflorum[J]. Plant Biology, 2024, 26(7): 1240-1246. doi: 10.1111/plb.13677
    [32]
    方珍娟, 张晓霞, 马立安. 植物内生菌研究进展[J]. 长江大学学报(自科版), 2018, 15(10): 41-45
    [33]
    龚国利, 王亮, 王旭阳, 等. 植物内生芽孢杆菌的研究进展[J]. 生物学杂志, 2020, 37(3): 91-95. doi: 10.3969/j.issn.2095-1736.2020.03.091
    [34]
    SANTOYO G, MORENO-HAGELSIEB G, DEL CARMEN OROZCO-MOSQUEDA M, et al. Plant growth-promoting bacterial endophytes[J]. Microbiological Research, 2016, 183: 92-99. doi: 10.1016/j.micres.2015.11.008
    [35]
    CAI F, YU G H, WANG P, et al. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum[J]. Plant Physiology and Biochemistry, 2013, 73: 106-113. doi: 10.1016/j.plaphy.2013.08.011
    [36]
    MARTINS J, ARES A, CASAIS V, et al. Identification and characterization of Arbutus unedo L. endophytic bacteria isolated from wild and cultivated trees for the biological control of Phytophthora cinnamomi[J]. Plants, 2021, 10(8): 1569. doi: 10.3390/plants10081569.
    [37]
    YEDIDIA I, BENHAMOU N, KAPULNIK Y, et al. Induction and accumulation of PR proteins activityduring early stages of root colonizationby the mycoparasite Trichoderma harzianum strain T-203[J]. Plant Physiology and Biochemistry, 2000, 38(11): 863-873. doi: 10.1016/S0981-9428(00)01198-0
    [38]
    FU Z Q, DONG X N. Systemic acquired resistance: Turning local infection into global defense[J]. Annual Review of Plant Biology, 2013, 64: 839-863. doi: 10.1146/annurev-arplant-042811-105606
    [39]
    YAMAMOTO S, SHIRAISHI S, KAWAGOE Y, et al. Impact of Bacillus amyloliquefaciens S13-3 on control of bacterial wilt and powdery mildew in tomato[J]. Pest Management Science, 2015, 71(5): 722-727. doi: 10.1002/ps.3837
    [40]
    WANG X L, WANG L, WANG J, et al. Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit[J]. PLoS One, 2014, 9(11): e112494. doi: 10.1371/journal.pone.0112494.
    [41]
    ZHOU A T, WANG F, YIN J B, et al. Antifungal action and induction of resistance by Bacillus sp. strain YYC 155 against Colletotrichum fructicola for control of anthracnose disease in Camellia oleifera[J]. Frontiers in Microbiology, 2022, 13: 956642. doi: 10.3389/fmicb.2022.956642.
    [42]
    PIETERSE C M, VAN WEES S C, VAN PELT J A, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis[J]. The Plant Cell, 1998, 10(9): 1571-1580. doi: 10.1105/tpc.10.9.1571
    [43]
    陈爽. 大豆根腐病生防菌的筛选鉴定及机制研究[D]. 哈尔滨: 哈尔滨师范大学, 2021.
    [44]
    邵正英, 聂丽, 李张, 等. 链霉菌JD211对水稻根系形态特征和抗性酶活的影响[J]. 西南农业学报, 2017, 30(4): 739-743.
  • Cited by

    Periodical cited type(3)

    1. 任志超,李想,李先锋,毋丽丽,王景,彭志良,刘国顺,殷全玉. 生物炭对黑胫病抗性不同烤烟品种根际土壤真菌群落结构的影响. 河南农业科学. 2024(01): 105-115 .
    2. 李澳,任志超,李想,李彦周,王景,穆耀辉,刘国顺,殷全玉. 生物炭对不同黑胫病抗性烤烟品种根际土壤细菌群落结构的影响. 山东农业科学. 2024(10): 102-112+126 .
    3. 胡云,刘金泉,李明,王雪玉,张清梅,刘利平. 生物炭对连作设施黄瓜根际细菌丰度的影响. 分子植物育种. 2023(07): 2396-2402 .

    Other cited types(3)

Catalog

    Article views (15) PDF downloads (2) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return