• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
BAI Shuancheng, YANG Lan, LUO Xiang, et al. Molecular mechanism of plasmid-encoded blaKPC-2 gene mediating low-level resistance to carbapenems in Escherichia coli[J]. Journal of South China Agricultural University, 2025, 46(3): 326-335. DOI: 10.7671/j.issn.1001-411X.202411006
Citation: BAI Shuancheng, YANG Lan, LUO Xiang, et al. Molecular mechanism of plasmid-encoded blaKPC-2 gene mediating low-level resistance to carbapenems in Escherichia coli[J]. Journal of South China Agricultural University, 2025, 46(3): 326-335. DOI: 10.7671/j.issn.1001-411X.202411006

Molecular mechanism of plasmid-encoded blaKPC-2 gene mediating low-level resistance to carbapenems in Escherichia coli

More Information
  • Received Date: November 04, 2024
  • Available Online: March 13, 2025
  • Published Date: March 26, 2025
  • Objective 

    To elucidate the molecular mechanism by which the carbapenemase-encoding plasmid p21QH43K-KPC is transferred from Klebsiella pneumoniae to Escherichia coli, and mediates low-level resistance to carbapenem drugs in E. coli.

    Method 

    The construction of EZ-Tn5 transposon mutation library, CRISPR-Cas9-mediated gene knockout, transcriptome sequencing and whole genome sequencing (WGS) were used to determine the regulatory mechanism of low-level resistance to meropenem mediated by the blaKPC-2 gene in E. coli.

    Result 

    A transposon mutant EC600/p21QH43K-KPC-130 with enhanced meropenem resistance (MIC=8.000 mg/L) was obtained by constructing the EZ-Tn5 transposon mutation library of the EC600/p21QH43K-KPC conjugon. WGS and Mauve analysis revealed that the transposon had inserted into one chromosomal gene ompR, and two point mutation genes of iron and ltrA were found. However, through gene knockout, only ompR deletion mutants exhibited reduced sensitivity to carbapenem that could be restored by gene complementation.

    Conclusion 

    The molecular mechanism of the blaKPC-2 gene encoded on the plasmid mediating low-level resistance to carbapenems in E. coli is related to the regulation of blaKPC-2 gene by ompR.

  • [1]
    TIAN F B, LI Y, WANG Y, et al. Risk factors and molecular epidemiology of fecal carriage of carbapenem resistant Enterobacteriaceae in patients with liver disease[J]. Annals of Clinical Microbiology and Antimicrobials, 2023, 22(1): 10. doi: 10.1186/s12941-023-00560-8
    [2]
    范向平, 谢琪, 刘志云, 等. 耐碳青霉烯类肺炎克雷伯菌感染患者临床分布特点、耐药基因及相关危险因素分析[J]. 临床误诊误治, 2024, 37(21): 39-47. doi: 10.3969/j.issn.1002-3429.2024.21.009
    [3]
    BAI S C, FANG L X, XIAO H L, et al. Genomics analysis of KPC-2 and NDM-5-producing Enterobacteriaceae in migratory birds from Qinghai Lake, China[J]. Applied Microbiology and Biotechnology, 2023, 107(24): 7531-7542. doi: 10.1007/s00253-023-12746-3
    [4]
    LI X, LI C G, ZHOU L J, et al. Global phylogeography and genomic characterization of blaKPC and blaNDM-positive clinical Klebsiella aerogenes isolates from China, 2016-2022[J]. Science of the Total Environment, 2024, 923: 171560. doi: 10.1016/j.scitotenv.2024.171560
    [5]
    FURLAN J P R, LOPES R, RAMOS M S, et al. The detection of KPC-2, NDM-1, and VIM-2 carbapenemases in international clones isolated from fresh vegetables highlights an emerging food safety issue[J]. International Journal of Food Microbiology, 2024, 420: 110765. doi: 10.1016/j.ijfoodmicro.2024.110765
    [6]
    TANG M L, LI J, LIU Z J, et al. Clonal transmission of polymyxin B-resistant hypervirulent Klebsiella pneumoniae isolates coharboring blaNDM-1 and blaKPC-2 in a tertiary hospital in China[J]. BMC Microbiology, 2023, 23(1): 64. doi: 10.1186/s12866-023-02808-x
    [7]
    LIU H, LIN H, SUN Z W, et al. Distribution of β-lactamase genes and genetic context of blaKPC-2 in clinical carbapenemase-producing Klebsiella pneumoniae isolates[J]. Infection and Drug Resistance, 2021, 14: 237-247.
    [8]
    NAHA S, SANDS K, MUKHERJEE S, et al. KPC-2-producing Klebsiella pneumoniae ST147 in a neonatal unit: Clonal isolates with differences in colistin susceptibility attributed to AcrAB-TolC pump[J]. International Journal of Antimicrobial Agents, 2020, 55(3): 105903. doi: 10.1016/j.ijantimicag.2020.105903
    [9]
    SU S S, LI C J, ZHAO Y, et al. Outbreak of KPC-2-producing Klebsiella pneumoniae ST76 isolates in an intensive care unit and neurosurgery unit[J]. Microbial Drug Resistance, 2020, 26(9): 1009-1018. doi: 10.1089/mdr.2019.0363
    [10]
    WANG J, YAO X, LUO J, et al. Emergence of Escherichia coli co-producing NDM-1 and KPC-2 carbapenemases from a retail vegetable, China[J]. Journal of Antimicrobial Chemotherapy, 2018, 73(1): 252-254. doi: 10.1093/jac/dkx335
    [11]
    HAO J C, ZHANG B Q, DENG J M, et al. Emergence of a hypervirulent tigecycline-resistant Klebsiella pneumoniae strain co-producing blaNDM-1 and blaKPC-2 with an uncommon sequence type ST464 in Southwestern China[J]. Frontiers in Microbiology, 2022, 13: 868705. doi: 10.3389/fmicb.2022.868705
    [12]
    HUANG L J, FU L, HU X Y, et al. Co-occurrence of Klebsiella variicola and Klebsiella pneumoniae both carrying blaKPC from a respiratory intensive care unit patient[J]. Infection and Drug Resistance, 2021, 14: 4503-4510. doi: 10.2147/IDR.S330977
    [13]
    SEKIZUKA T, INAMINE Y, SEGAWA T, et al. Potential KPC-2 carbapenemase reservoir of environmental Aeromonas hydrophila and Aeromonas caviae isolates from the effluent of an urban wastewater treatment plant in Japan[J]. Environmental Microbiology Reports, 2019, 11(4): 589-597. doi: 10.1111/1758-2229.12772
    [14]
    Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing, 33th ed. CLSI supplement M100[EB/OL]. Wayne, PA: CLSI, 2023. https://clsi.org/all-free-resources/.
    [15]
    DOS S C J, DOS S P B, DE S A T H I, et al. KPC-2-producing Pseudomonas aeruginosa isolated from wild animals in Brazil[J]. Brazilian Journal of Microbiology, 2023, 54(4): 3307-3313. doi: 10.1007/s42770-023-01143-7
    [16]
    HE Y Z, XU Y, SUN J, et al. Novel plasmid-borne fimbriae-associated gene cluster participates in biofilm formation in Escherichia coli[J]. Microbial Drug Resistance, 2021, 27(12): 1624-1632. doi: 10.1089/mdr.2020.0512
    [17]
    WANG L J, HUANG X T, JIN Q, et al. Two-component response regulator ompR regulates mucoviscosity through energy metabolism in Klebsiella pneumoniae[J]. Microbiology Spectrum, 2023, 11(3): e0054423. doi: 10.1128/spectrum.00544-23
    [18]
    PAGÈS J M, JAMES C E, WINTERHALTER M. The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria[J]. Nature Reviews Microbiology, 2008, 6(12): 893-903. doi: 10.1038/nrmicro1994
    [19]
    VERGALLI J, BODRENKO I V, MASI M, et al. Porins and small-molecule translocation across the outer membrane of gram-negative bacteria[J]. Nature Reviews Microbiology, 2020, 18(3): 164-176. doi: 10.1038/s41579-019-0294-2
    [20]
    WANG Y Y, XU E E, LI M, et al. Genomic characterization of hypervirulent carbapenem-resistant clinical Klebsiella pneumoniae ST11 isolate from China[J]. Journal of Global Antimicrobial Resistance, 2022, 30: 276-278. doi: 10.1016/j.jgar.2022.06.024
    [21]
    QIN L, YOSHIDA T, INOUYE M. The critical role of DNA in the equilibrium between OmpR and phosphorylated OmpR mediated by EnvZ in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(3): 908-913.
    [22]
    PRÜß B M. Involvement of two-component signaling on bacterial motility and biofilm development[J]. Journal of Bacteriology, 2017, 199(18): e00259-17.
    [23]
    DU Z Y, ZHANG M M, QIN Y X, et al. The role and mechanisms of the two-component system EnvZ/OmpR on the intracellular survival of Aeromonas hydrophila[J]. Journal of Fish Diseases, 2022, 45(11): 1609-1621. doi: 10.1111/jfd.13684
    [24]
    TIPTON K A, RATHER P N. An ompR-envZ two-component system ortholog regulates phase variation, osmotic tolerance, motility, and virulence in Acinetobacter baumannii strain AB5075[J]. Journal of Bacteriology, 2017, 199(3): e00705-16.
    [25]
    KO D, CHOI S H. Mechanistic understanding of antibiotic resistance mediated by EnvZ/OmpR two-component system in Salmonella enterica serovar Enteritidis[J]. Journal of Antimicrobial Chemotherapy, 2022, 77(9): 2419-2428. doi: 10.1093/jac/dkac223
    [26]
    WANG M, TIAN Y J, XU L, et al. High osmotic stress increases OmpK36 expression through the regulation of KbvR to decrease the antimicrobial resistance of Klebsiella pneumoniae[J]. Microbiology Spectrum, 2022, 10(3): e0050722. doi: 10.1128/spectrum.00507-22
    [27]
    TANG Y, LI G, SHEN P H, et al. Replicative transposition contributes to the evolution and dissemination of KPC-2-producing plasmid in Enterobacterales[J]. Emerging Microbes & Infections, 2022, 11(1): 113-122.
    [28]
    WANG Q, WANG X J, WANG J, et al. Phenotypic and genotypic characterization of carbapenem-resistant Enterobacteriaceae: Data from a longitudinal large-scale CRE study in China (2012-2016)[J]. Clinical Infectious Diseases, 2018, 67(suppl_2): S196-S205. doi: 10.1093/cid/ciy660
    [29]
    LV L C, LU Y Y, GAO X, et al. Characterization of NDM-5-producing Enterobacteriaceae isolates from retail grass carp (Ctenopharyngodon idella) and evidence of blaNDM-5-bearing IncHI2 plasmid transfer between ducks and fish[J]. Zoological Research, 2022, 43(2): 255-264. doi: 10.24272/j.issn.2095-8137.2021.426

Catalog

    Article views (29) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return