Citation: | ZHAI Min, CAO Yingjie, LIN Chenyu, et al. Effects of heterologously overexpressing Manihot esculenta Crantz MeNRT2.6 gene in Arabidopsis thaliana on nitrogen utilization efficiency[J]. Journal of South China Agricultural University, 2025, 46(0): 1-12. DOI: 10.7671/j.issn.1001-411X.202410014 |
The high-affinity nitrate transporter family 2 (NRT2), when upregulated under low nitrogen conditions, enhances plants’ efficient nitrogen uptake and plays a crucial role in improving plant tolerance to low nitrogen stress. This study focused on further functional characterization of the MeNRT2.6 gene in cassava (Manihot esculenta Crantz), by examining the effects of heterologous expression of cassava MeNRT2.6 in Arabidopsis thaliana on nitrogen use efficiency, to provide both theoretical foundation and technical support for targeted molecular breeding aimed at improving nitrogen utilization efficiency.
The MeNRT2.6 gene, which was identified through transcriptome screening as being highly expressed in cassava roots, stems and leaves under low nitrogen conditions, was selected as the research subject. The MeNRT2.6 gene fragment was obtained by PCR amplification using cDNA from cassava cultivar C3 as template. Bioinformatics analysis and tissue expression profiling were performed, and the tissue expression pattern and subcellular localization of MeNRT2.6 were determined combining a protoplast transient expression system. The transgenic A. thaliana lines heterologously expressing MeNRT2.6 were generated via the floral dip method. The SPAD values and the activities of four key nitrogen metabolism enzymes, including nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT), under low and high nitrate conditions were measured.
Phylogenetic analysis showed that MeNRT2.6 was most closely related to PtNRT2.7 from Populus trichocarpa, with 74.5% amino acid sequence similarity. Its promoter sequence contains stress- and hormone-responsive cis-elements. MeNRT2.6 protein was localized to the cell membrane. Under 0.5 mmol/L nitrate nitrogen treatment, MeNRT2.6 expression was induced in cassava roots, stems and leaves depending on the treatment method. At 39.5 mmol/L nitrate nitrogen treatment, MeNRT2.6 expression was specifically induced in leaves regardless of treatment method. Furthermore, A. thaliana plants heterologously expressing MeNRT2.6 showed increased root length, plant height and fresh weight under 0.5 mmol/L nitrate nitrogen treatment, along with enhanced activities of key nitrogen metabolism enzymes GOGAT, NR.
The MeNRT2.6 promoter contains low nitrogen-responsive elements. Heterologous expression of MeNRT2.6 in A. thaliana improved nitrogen use efficiency, providing valuable insights for developing nitrogen-efficient cassava germplasms.
[1] |
TAKATOSHI K, JUN I, TROU K, et al. Repression of nitrogen starvation responses by members of the Arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily[J]. The Plant Cell, 2018, 30(4): 925-945. doi: 10.1105/tpc.17.00810
|
[2] |
ZHANG W F, DOU Z X, HE P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8375-8380.
|
[3] |
张鹏, 杨俊, 周文智, 等. 能源木薯高淀粉抗逆分子育种研究进展与展望[J]. 生命科学, 2014, 26(5): 465-473.
|
[4] |
黄武, 胡新文, 毛帅, 等. 基于文献计量: 木薯近年研究热点和趋势分析[J]. 热带作物学报, 2018, 39(12): 2521-2531. doi: 10.3969/j.issn.1000-2561.2018.12.028
|
[5] |
JØRGENSEN K, BAK S, BUSK P K, et al. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology[J]. Plant Physiology, 2005, 139(1): 363-374. doi: 10.1104/pp.105.065904
|
[6] |
EL-SHARKAWY M A. Cassava biology and physiology[J]. Plant Molecular Biology, 2004, 56(4): 481-501. doi: 10.1007/s11103-005-2270-7
|
[7] |
卢赛清, 雷开文, 韦丽君, 等. 广西木薯种植气候适宜性分析及高产栽培技术[J]. 农业与技术, 2021, 41(24): 57-59.
|
[8] |
黄巧义, 唐拴虎, 陈建生, 等. 木薯物质累积特征及其施肥效应[J]. 作物学报, 2013, 39(1): 126-132.
|
[9] |
ORSEL M, CHOPIN F, LELEU O, et al. Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction[J]. Plant Physiology, 2006, 142(3): 1304-1317. doi: 10.1104/pp.106.085209
|
[10] |
ORSEL M, KRAPP A, DANIEL-VEDELE F. Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression[J]. Plant Physiology, 2002, 129(2): 886-896. doi: 10.1104/pp.005280
|
[11] |
欧英卓. 水稻苗期耐低氮材料鉴定及候选基因挖掘[D]. 哈尔滨: 黑龙江大学, 2024.
|
[12] |
刘冉冉. 盐地碱蓬高亲和硝酸盐转运蛋白基因SsNRT2.1和SsNRT2.5的功能研究[D]. 济南: 山东师范大学, 2022.
|
[13] |
YOU L L, WANG Y, ZHANG T T, et al. Genome-wide identification of nitrate transporter 2 (NRT2) gene family and functional analysis of MeNRT2.2 in cassava (Manihot esculenta Crantz)[J]. Gene, 2022, 809: 146038. doi: 10.1016/j.gene.2021.146038.
|
[14] |
ACI M M, LUPINI A, MAUCERI A, et al. New insights into N-utilization efficiency in tomato (Solanum lycopersicum L. ) under N limiting condition[J]. Plant Physiology and Biochemistry, 2021, 166: 634-644.
|
[15] |
GELLI M, DUO Y C, KONDA A R, et al. Identification of differentially expressed genes between Sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling[J]. BMC Genomics, 2014, 15: 179. doi: 10.1186/1471-2164-15-179.
|
[16] |
TONG J F, WALK T C, HAN P P, et al. Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L. ) and their responses to various stresses[J]. BMC Plant Biology, 2020, 20(1): 464. doi: 10.1186/s12870-020-02648-1.
|
[17] |
SOUZA A F F, BUCHER C A, ARRUDA L N, et al. Knockdown of OsNRT2.4 modulates root morphology and alters nitrogen metabolism in response to low nitrate availability in rice[J]. Molecular Breeding, 2022, 42(1): 5. doi: 10.1007/s11032-021-01273-6.
|
[18] |
WEI J, ZHENG Y, FENG H M, et al. OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice[J]. Journal of Experimental Botany, 2018, 69(5): 1095-1107. doi: 10.1093/jxb/erx486
|
[19] |
巢成生, 王玉乾, 沈欣杰, 等. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172-1188. doi: 10.3864/j.issn.0578-1752.2022.06.010
|
[20] |
唐贤礼, 张月, 张盾, 等. 毛果杨基因PtNRT2.7的功能初步鉴定与分析[J]. 北京林业大学学报, 2016, 38(8): 18-27.
|
[21] |
王娟, 陈皓宁, 石大川, 等. 花生高亲和硝酸盐转运蛋白基因AhNRT2.7a响应低氮胁迫的功能研究[J]. 中国农业科学, 2022, 55(22): 4356-4372. doi: 10.3864/j.issn.0578-1752.2022.22.003
|
[22] |
魏嘉. 水稻双亲和硝酸盐转运蛋白基因OsNRT2.4的生物学功能分析[D]. 南京: 南京农业大学, 2020.
|
[23] |
ZOU L P, QI D F, LI S X, et al. The cassava (Manihot-esculenta Crantz)’s nitrate transporter NPF4.5, expressed in seedling roots, involved in nitrate flux and osmotic stress[J]. Plant Physiology and Biochemistry, 2023, 194: 122-133. doi: 10.1016/j.plaphy.2022.10.025
|
[24] |
WANG Y Y, CHENG Y H, CHEN K E, et al. Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69: 85-122. doi: 10.1146/annurev-arplant-042817-040056
|
[25] |
OKAMOTO M, VIDMAR J J, GLASS A D M. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: Responses to nitrate provision[J]. Plant and Cell Physiology, 2003, 44(3): 304-317. doi: 10.1093/pcp/pcg036
|
[26] |
TSAY Y F, CHIU C C, TSAI C B, et al. Nitrate transporters and peptide transporters[J]. FEBS Letters, 2007, 581(12): 2290-2300. doi: 10.1016/j.febslet.2007.04.047
|
[27] |
CEREZO M, TILLARD P, FILLEUR S, et al. Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in arabidopsis[J]. Plant Physiology, 2001, 127(1): 262-271. doi: 10.1104/pp.127.1.262
|
[28] |
WANG T, LI M J, YANG J Z, et al. Brassinosteroid transcription factor BES1 modulates nitrate deficiency by promoting NRT2.1 and NRT2.2 transcription in Arabidopsis[J]. Plant Journal, 2023, 114(6): 1443-1457.
|
[29] |
FILLEUR S, DANIEL-VEDELE F. Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display[J]. Planta, 1999, 207(3): 461-469. doi: 10.1007/s004250050505
|
[30] |
KOTUR Z, MACKENZIE N, RAMESH S, et al. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1[J]. New Phytologist, 2012, 194(3): 724-731. doi: 10.1111/j.1469-8137.2012.04094.x
|
[31] |
CHOPIN F, ORSEL M, DORBE M F, et al. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds[J]. The Plant Cell, 2007, 19(5): 1590-1602. doi: 10.1105/tpc.107.050542
|
[32] |
梁桂红, 华营鹏, 宋海星, 等. CACTFTPPCA1(YACT)、Dof(AAAG)、MYB可能参与甘蓝型油菜对氮胁迫的响应[J]. 植物营养与肥料学报, 2020, 26(2): 338-353. doi: 10.11674/zwyf.19112
|
[33] |
HIROSE T. Nitrogen use efficiency revisited[J]. Oecologia, 2011, 166(4): 863-867. doi: 10.1007/s00442-011-1942-z
|
[34] |
于冬梅. 马铃薯氮效率基因型分类及其差异分析[D]. 呼和浩特: 内蒙古农业大学, 2022.
|
[35] |
牛静. 棉花氮高效利用的生理机制及施肥效应[D]. 武汉: 华中农业大学, 2023.
|
[36] |
杨雅楠, 大白菜耐低氮品种的筛选[D]. 昆明: 云南大学, 2020.
|
[37] |
康亮, 梁琼月, 姚一华, 等. 不同氮效率木薯品种根系形态、构型及氮吸收动力学特征[J]. 植物营养与肥料学报, 2019, 25(11): 1920-1928. doi: 10.11674/zwyf.19024
|
[38] |
王改丽. 新型甘蓝型油菜氮高效种质的筛选及其氮高效机制的研究[D]. 武汉: 华中农业大学, 2016.
|
[39] |
魏海燕, 张洪程, 张胜飞, 等. 不同氮利用效率水稻基因型的根系形态与生理指标的研究[J]. 作物学报, 2008, 34(3): 429-436. doi: 10.3321/j.issn:0496-3490.2008.03.013
|
[40] |
曹敏建, 衣莹, 佟占昌, 等. 耐低氮胁迫玉米的筛选与评价[J]. 玉米科学, 2000, 8(4): 64-69. doi: 10.3969/j.issn.1005-0906.2000.04.022
|
[41] |
郭鑫, 木薯种质氮胁迫响应多样性评价及氮高效种质筛选[D]. 海口: 海南大学, 2013.
|
[42] |
叶利庭, 吕华军, 宋文静, 等. 不同氮效率水稻生育后期氮代谢酶活性的变化特征[J]. 土壤学报, 2011, 48(1): 132-140. doi: 10.11766/trxb200906030242
|
[43] |
LUDEWIG U, NEUHÄUSER B, DYNOWSKI M. Molecular mechanisms of ammonium transport and accumulation in plants[J]. FEBS Letters, 2007, 581(12): 2301-2308. doi: 10.1016/j.febslet.2007.03.034
|
[44] |
孙菲菲, 李英, 侯喜林, 等. 硝态氮对不结球白菜产量与主要营养品质及硝酸盐含量的影响[J]. 南京农业大学学报, 2008, 31(2): 37-40.
|
[45] |
万春雁, 李金凤, 霍恒志, 等. 苗期氮素处理对草莓生长发育和产量的影响[J]. 西北农林科技大学学报(自然科学版), 2023, 51(8): 92-98.
|