• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
XIONG Guomei, LIN Junjian, WANG Siyao, et al. Synthesis and application of fucoidan biological superabsorbent polymer[J]. Journal of South China Agricultural University, 2025, 46(0): 1-11. DOI: 10.7671/j.issn.1001-411X.202409020
Citation: XIONG Guomei, LIN Junjian, WANG Siyao, et al. Synthesis and application of fucoidan biological superabsorbent polymer[J]. Journal of South China Agricultural University, 2025, 46(0): 1-11. DOI: 10.7671/j.issn.1001-411X.202409020

Synthesis and application of fucoidan biological superabsorbent polymer

More Information
  • Objective 

    To improve the degradation and renewable capacities of superabsorbent polymers (SAPs), we developed a SAP using natural fucoidan, a polysaccharide rich in hydrophilic L-fucose units and sulfated groups as a feedstock.

    Method 

    A fucoidan biological SAP was synthesized via aqueous solution polymerization by grafting natural fucoidan onto acrylic acid (AA) monomers using ammonium persulfate (APS) as the initiator and N,N'-methylenebis(acrylamide) (MBA) as the crosslinker. The preparation process was optimized through single-factor experiments. The product was characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). A pot experiment was conducted to evaluate the effect of the SAP on cabbage growth.

    Result 

    The optimal mass ratio of fucoidan to AA was 1∶7.5, with a neutralization degree of 70%, and APS and MBA dosages of 3.0% and 0.2% of AA mass, respectively. The SEM analysis revealed a porous and loose network structure, while FTIR confirmed the formation of a graft copolymer of fucoidan and AA. The water absorption ratios of the SAP in deionized water and 9 g∙L−1 NaCl solution were 420.9 and 63.8 g∙g−1, respectively. After six cycles of absorption and drying, the water absorption ratio remained 70.8% of its initial value. Additionally, soil amended with 6 g∙kg−1 SAP significantly enhanced Chinese cabbage growth, increasing total biomass by 105.5% and soil moisture content by 8.98% (P < 0.05).

    Conclusion 

    The fucoidan biological SAP exhibits excellent water absorption and reusability, significantly promoting plant growth when applied to soil. This study provides foundational data for the development and agricultural application of algal-derived SAP.

  • [1]
    GALLARDO A K, R, SILOS A, P, RELLEVE L, S, et al. Retrogradation in radiation-synthesized cassava starch/acrylic acid super water absorbent and its effect on gel stability[J]. Radiation Physics and Chemistry, 2022, 199: 110313. doi: 10.1016/j.radphyschem.2022.110313
    [2]
    GAO J, ZHUO L, DUAN X M, et al. Agricultural water-saving potentials with water footprint benchmarking under different tillage practices for crop production in an irrigation district[J]. Agricultural Water Management, 2023, 282: 108274. doi: 10.1016/j.agwat.2023.108274
    [3]
    肖琴, 李建平. 整区域推进高标准农田建设的基本逻辑、实践困境与实现路径[J]. 中国农业资源与区划, 2023, 44(12): 59-66.
    [4]
    ZHOU X Y, ZHANG Y Q, SHENG Z P, et al. Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework[J]. Agricultural Water Management, 2021, 249: 106793. doi: 10.1016/j.agwat.2021.106793
    [5]
    WU H, LI Z, SONG W M, et al. Effects of superabsorbent polymers on moisture migration and accumulation behaviors in soil[J]. Journal of Cleaner Production, 2021, 279: 123841. doi: 10.1016/j.jclepro.2020.123841
    [6]
    BANA R S, GROVER M, SINGH D, et al. Enhanced pearl millet yield stability, water use efficiency and soil microbial activity using superabsorbent polymers and crop residue recycling across diverse ecologies[J]. European Journal of Agronomy, 2023, 148: 126876. doi: 10.1016/j.eja.2023.126876
    [7]
    GHOBASHY M M, A. AMIN M, A. ISMAIL M, et al. Radiation cross-linked ultra-absorbent hydrogel to rationalize irrigation water and fertilizer for maize planting in drought conditions[J]. International Journal of Biological Macromolecules, 2023, 252: 126467. doi: 10.1016/j.ijbiomac.2023.126467
    [8]
    TUBERT E, VITALI V A, ALVAREZ M S, et al. Synthesis and evaluation of a superabsorbent-fertilizer composite for maximizing the nutrient and water use efficiency in forestry plantations[J]. Journal of Environmental Management, 2018, 210: 239-254.
    [9]
    HOU X Q, LI R, HE W S, et al. Superabsorbent polymers influence soil physical properties and increase potato tuber yield in a dry-farming region[J]. Journal of Soils and Sediments, 2018, 18(3): 816-826. doi: 10.1007/s11368-017-1818-x
    [10]
    HONG T T, OKABE H, HIDAKA Y, et al. Radiation synthesis and characterization of super-absorbing hydrogel from natural polymers and vinyl monomer[J]. Environmental Pollution, 2018, 242: 1458-1466. doi: 10.1016/j.envpol.2018.07.129
    [11]
    AI F J, YIN X Z, HU R C, et al. Research into the super-absorbent polymers on agricultural water[J]. Agricultural Water Management, 2021, 245: 106513. doi: 10.1016/j.agwat.2020.106513
    [12]
    CHANG L Y, XU L J, LIU Y H, et al. Superabsorbent polymers used for agricultural water retention[J]. Polymer Testing, 2021, 94: 107021. doi: 10.1016/j.polymertesting.2020.107021
    [13]
    YANG Y Y, LIANG Z Y, ZHANG R, et al. Research Advances in Superabsorbent Polymers[J]. Polymers, 2024, 16(4): 501. doi: 10.3390/polym16040501
    [14]
    QIAO D L, TU W Y, WANG Z, et al. Influence of crosslinker amount on the microstructure and properties of starch-based superabsorbent polymers by one-step preparation at high starch concentration[J]. International Journal of Biological Macromolecules, 2019, 129: 679-685. doi: 10.1016/j.ijbiomac.2019.02.019
    [15]
    NARAYANAN A, KARTIK R, SANGEETHA E, et al. Super water absorbing polymeric gel from chitosan, citric acid and urea: Synthesis and mechanism of water absorption[J]. Carbohydrate Polymers, 2018, 191: 152-160. doi: 10.1016/j.carbpol.2018.03.028
    [16]
    GHOBASHY M M, AMIN M A, NADY N, et al. Improving Impact of Poly(Starch/Acrylic Acid) Superabsorbent Hydrogel on Growth and Biochemical Traits of Sunflower Under Drought Stress[J]. Journal of Polymers and the Environment, 2022, 30(5): 1973-1983. doi: 10.1007/s10924-021-02322-z
    [17]
    BATTACHARYYA D, BABGOHARI M Z, RATHOR P, et al. Seaweed extracts as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196: 39-48. doi: 10.1016/j.scienta.2015.09.012
    [18]
    OSCAR G, PATRICK Q, SHANE O C. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants[J]. Plant Physiology and Biochemistry, 2018, 126: 63-73. doi: 10.1016/j.plaphy.2018.02.024
    [19]
    JOSHI P P, ASHLEIGH V C, HELD D W, et al. Preparation of slow release encapsulated insecticide and fertilizer based on superabsorbent polysaccharide microbeads[J]. Journal of Applied Polymer Science, 2020, 137(39): 49177. doi: 10.1002/app.49177
    [20]
    SU X X, CHANG R Q, ZHANG J, et al. Preparation and performance study of AEEA/SA porous salt-resistant superabsorbent polymer[J]. Materials Today Communications, 2022, 33: 104805. doi: 10.1016/j.mtcomm.2022.104805
    [21]
    牛红艳, 李凯凯, 严国富, 等. 海藻生物保水剂的制备及性能研究[J]. 化工新型材料, 2022, 50(1): 157-160.
    [22]
    NANNA R K, DIEGO R W, HORN S J. Extraction of high purity fucoidans from brown seaweeds using cellulases and alginate lyases[J]. International Journal of Biological Macromolecules, 2023, 229: 199-209. doi: 10.1016/j.ijbiomac.2022.12.261
    [23]
    RATHER R, A. , BHAT M, A, SHALLA A, H. An insight into synthetic and physiological aspects of superabsorbent hydrogels based on carbohydrate type polymers for various applications: A review[J]. Carbohydrate Polymer Technologies and Applications, 2022, 3: 100202. doi: 10.1016/j.carpta.2022.100202
    [24]
    MAZLAN S N A, ABD RAHIM S, GHAZALI S, et al. Optimization of N, N’-methylenebis(acrylamide), and ammonium persulfate content in carbonaceous/acrylic acid-co-acrylamide superabsorbent polymer[J]. Materials Today: Proceedings, 2022, 57: 1088-1094. doi: 10.1016/j.matpr.2021.09.393
    [25]
    QIAO D L, LIU H S, YU L, et al. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer[J]. Carbohydrate Polymers, 2016, 147: 146-154. doi: 10.1016/j.carbpol.2016.04.010
    [26]
    ZHAO C H, ZHANG M, LIU Z G, et al. Salt-Tolerant Superabsorbent Polymer with High Capacity of Water-Nutrient Retention Derived from Sulfamic Acid-Modified Starch[J]. ACS Omega, 2019, 4(3): 5923-5930. doi: 10.1021/acsomega.9b00486
    [27]
    ZHANG W, XU, LIU Q, GUO L, LU, et al. White Cabbage (Brassica oleracea L. ) waste, as biowaste for the preparation of novel superabsorbent polymer gel[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106689. doi: 10.1016/j.jece.2021.106689
    [28]
    CHEN Y, LIU Y F, TANG H L, et al. Study of carboxymethyl chitosan based polyampholyte superabsorbent polymer I: Optimization of synthesis conditions and pH sensitive property study of carboxymethyl chitosan-g-poly(acrylic acid-co-dimethyldiallylammonium chloride) superabsorbent polymer[J]. Carbohydrate Polymers, 2010, 81(2): 365-371. doi: 10.1016/j.carbpol.2010.02.007
    [29]
    张雪倩. 不同肠道菌群结构对海带岩藻多糖的响应差异研究 [D]. 西安; 西北大学, 2022.
    [30]
    CHEN Y, TAN H M. Crosslinked carboxymethylchitosan-g-poly(acrylic acid) copolymer as a novel superabsorbent polymer[J]. Carbohydrate Research, 2006, 341(7): 887-896. doi: 10.1016/j.carres.2006.01.027
    [31]
    程志强, 马琦, 康立娟, 等. 一种新型保水剂的制备及对肥料吸附性能研究[J]. 灌溉排水学报, 2012, 31(4): 136-138.
    [32]
    LIU Y, ZHU Y F, WANG Y S, et al. Synthesis and application of eco-friendly superabsorbent composites based on xanthan gum and semi-coke[J]. International Journal of Biological Macromolecules, 2021, 179: 230-238. doi: 10.1016/j.ijbiomac.2021.03.007
    [33]
    ZHANG C, GARCíA MEZA J V, ZHOU K Q, et al. Superabsorbent polymer used for saline-alkali soil water retention[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 145: 104830. doi: 10.1016/j.jtice.2023.104830
  • Cited by

    Periodical cited type(4)

    1. 宋鹏,李理想,江厚龙,王茹,李慧,赵鹏宇,张均,秦平伟,任江波,陈庆明. 施用侧孢短芽孢杆菌对烤后烟叶钾含量及烟株生理特征的影响. 浙江农业学报. 2024(03): 494-502 .
    2. 杜蓉惠,何涛,杜鸿燕,邓维萍,朱书生,杜飞. 枯草芽孢杆菌对‘红地球’葡萄白粉病防效及叶际细菌群落的影响. 中外葡萄与葡萄酒. 2024(03): 38-46 .
    3. 李妍,胡斯乐,白晓雄,刘朝斌,张敏,王迎,余旋. 核桃根际耐旱促生菌的分离筛选及其促生作用研究. 西北林学院学报. 2024(03): 84-92 .
    4. 吕嘉妍,毛健辉,霍春宇,黄永芳,罗连荷,梁家俊,陈祖静. 广东省本地油茶和引种油茶根际土壤微生物群落特征. 微生物学通报. 2023(11): 4938-4953 .

    Other cited types(6)

Catalog

    Article views (20) PDF downloads (2) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return